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A simpler and more general proof of the Mandelstam represen~ati?n based on Hartog's the?~em is 
presented within the framework of po~en.tial scattering; the potential IS chosen to be a superposItIOn of 
the Yukawa type with no further restrIctIOns. 

I. INTRODUCTION 

The proof of the Mandelstam representatio~ in 
potential scattering has been considered on varIOUS 
occasions in the past decade.1

-
s Recently, a new 

simplified proof was presented by Cheung.6 In the 
present paper, we focus our attention on two questions 
concerning the classical proof of Blankenbecler, 
Goldberger, Khuri, and Treiman.4 First, we must 
emphasize that finding the double analyticity proper
ties of the scattering amplitude for a superposition 
of Yukawa potentials is a very well-defined mathe
matical problem. Bessis, in a paper published a few 
years ago,S closed a loophole in the classical proof; 
for potentials V(z) , holomorphic in Re z > ° and 
bounded by 

/ V(z)/ < K /zrp
, p < 2 for /z/::::;; 1, (1) 

/ V(z)/ < K /z/-v exp (-flo Re z) 

for /z/ ~ 1, 'JI > t, (2) 

the double spectral function P.t(s, t) was shown to be 
a continuous function of sand tin {s > 0, t > o} and 
Bessis also showed that 

/Pst(s, t)/ ::::;; C(V)[1/(st)! + (2 + t)Lo/st], (3) 

where C(V) is some constant depending only on the 
potential and Lo is the number of subtractions in t. 
Therefore, the above inequalities imply that, for a 
superposition of Yukawa potentials with the further 
restrictions (I) and (2), the double spectral function is 
bounded as shown in Eq. (3). Then, and only then, it 
follows that the double spectral integral, in which, 
originally, two single integrations are to be performed, 
is, indeed, equivalent to a double integral, in view of 
the Courant theorem,7 as required by the Mandelstam 
representation. The double dispersion relation thus 
obtained (explicitly written out in Sec. II) implies that 
the scattering amplitude is an analytic function of the 
two complex variables sand t in the topological prod
uct of the sand t planes appropriately cut. 

In Sec. III, we appeal to a well-known theorem of 
the theory of several complex variables and present a 
new proof of the Mandelstam representation in 

potential scattering by replacing the Bessis work on 
the upper bound for the double spectral function. This, 
we hasten to emphasize, is not just mathematically 
more appealing, but has very definite physical content: 
namely, we do not require any constraint on the po
tential in question besides the requirement of it being 
of the Yukawa type. Therefore, our proof is more 
simple and general, since Eqs. (I) and (2) are unneces
sary in our analysis. 

II. THE CLASSICAL PROOF 

In the present section, we review the combined 
work of Regge,2 Blankenbecler et al.,4 and Bessis,5 
which provide the backbone of the orthodox approach 
to the problem. This serves a dual purpose: First, this 
presentation emphasizes the necessity and relevance of 
the work of Ref. 5 and, second, at the same time, we 
introduce the notation used in the next section. We 
begin by restricting our attention to the Khuri dis
persion relationS 

~ ri(Si, t) 1 100 Imf(s', t) d ' 
f(s, t) = fB(t) + £.,-- + - , S, 

i=l S + Si 7T 0 S - s 
(4) 

where the Si are the negative energies of the bound 
states and the r i are polynomials in t of degree Ii' 
where Ii represents the angular momentum of the ith 
bound state. The aspect of Ref. 4 which concerns us 
here is the possibility of extending the domain of 
analyticity of the scattering amplitude onto the whole 
complex plane in the t variable, except for a cut along 
the real positive axis beginning at 4m2, where m de
notes the inverse of the range of the force. 

On the other hand, Regge has shown,2 by repre
senting the scattering amplitude by means of a 
Sommerfeld-Watson transform, that the absorptive 
part of the amplitude As has a domain of analyticity 
which coincides with that of the full amplitude. Thus, 
we may write a "superconvergent" dispersion relation 
(namely, one with no subtractions) 

A.(s', t) = Imf(s', t) = - Ps: ' dt'. 1 100 
(s' t') 

7T 4m
2 t - t 

(5) 
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For simplicity, we assume no bound states in Eq. (4); 
therefore, we write 

1 i oo 
A.(s', t) , 

f(s, t) = fE(t) + - -, - ds . 
1T0 s-s 

(6) 

We now proceed to insert Eq. (5) into (6) in order to 
obtain 

f(s, t) = fE(t) 

1 I' food 'ioo 
Psls', t') dt' + -21m s . 

1T .-0 0 4m2 (S' - S - if)(t' + t) 
(7) 

The crux of the matter is that the Eq. (7) is not the 
Mandelstam representation, since we still require a 
double integral on the right-hand side. The two single 
integrals will combine into a double integral if we 
succeed in showing that Pst is a continuous function of 
s and I and bounded in some domain. 

This brings us back to our remarks in tl,1e intro
ductory section; for, in 1965, Bessis showed both 
continuity and bounded ness of the double spectral 
function for restricted Yukawa potentials [cf. Eqs. 
(1) and (2)]. As Pst(s, t) is continuous and bounded, 
we may rewrite Eq. (7) as 

1 100ioo 
P (s' t') ds' dt' (s, t) = hit) + 2 lim st , • 

• 1T <-0 0 4m2 (S' - S - if)(t' + t)' 

(8) 

i.e., the two single integrals give a double integral, as 
required by the Mandelstam representation. Equation 
(8) is the simplest form of the double dispersion 
relation in potential scattering for Bessis-Yukawa 
potentials. 

We now remark that the superconvergency assump
tion of Eq. (5) is too naive, for, in writing such a 
relation, we have indeed embodied the correct ana
lyticity property of the absorptive part. But there is 
more to it; that is, we must include the correct 
asymptotic behavior, or, in other words, we must 
study the correct number of subtractions. It follows 
from the work of Regge2 that the number of sub
tractions is given by the large-I behavior of the 
scattering amplitude; if the leading Regge pole has a 
real part denoted by M, then the smallest integer 
greater than M is denoted by Lo. The number Lo leads 
to the number of subtractions required in Eq. (5). 
However, neither this question nor the inclusion of 
possible bound states into the Khuri dispersion rela
tion leads to any essential new steps in the line of 
argument of the classical proof. It is sufficient, there
fore, to discuss the simplified Eq. (8). 

III. AN ALTERNATIVE PROOF 

Because we have obtained the analyticity properties 
of the scattering amplitude, with respect to s, by 
means of the Khuri dispersion relation and, with 
respect to t, by the work of Regge using the Sommer
feld-Watson transform, we can deduce the Mandel
stam representation without necessarily analyzing the 
very complicated properties of the double spectral 
function and aforliori restricting ourselves to Yukawa 
potentials only. 

In Ref. 9 Bochner and Martin prove the following 
theorem (Hartog's): 

Theorem: The space of two complex variables 
s = Xl + iYI and t = X 2 + iY2 is the ordinary Euclid
ean space E4 of the four real variables Xl' X 2 , Yl , and 
Y2' Let f(s, t) be a function defined in a domain ~ in 
the space E4 and let f have the property that at every 
point (Sl' tI) of each of the functions f(sI' t) and 
f(s, II) it is analytic in the single variable in the neigh -
bo~hood of SI and 11, respectively. Then f is analytic 
in sand t in ~. 

With Hartog's theorem, we can produce a more 
direct proof of double analyticity than the one 
presented in Sec. II. Essentially, all we need is the 
analyticity embodied in the Khuri dispersion relation 
and that derivable from the Sommerfeld-Watson 
transform. Thus, we have a domain in E4 of the two 
complex variables sand tin whichfis analytic in both 
variables; this is, in fact, the domain required by the 
Mandelstam representation. 

IV. CONCLUSION 

To conclude this article, the spotlight should bring 
out some features of the present work. In the realm of 
potential scattering, once we have chosen a given 
potential, we are able to formulate rigorous problems 
(which in some cases will only accept approximate 
solutions) based essentially on the Schrodinger equa
tion. The present case is yet another example which 
calls for rigor and, while the orthodox treatment of 
the subject does provide a completely rigorous proof, 
the question of the potential chosen has needed 
further elucidation. Another and perhaps more fruit
ful way of viewing potential scattering is as a model 
for the strong interactions; indeed, this is the reason 
why we bother to look at the question of analytic 
properties of scattering amplitudes from the point of 
view of this paper. It is generally agreedlO that po
tential scattering may be considered as a nonrelativistic 
(i.e., Schrodinger) limit of field theory only if super
positions of Yukawa potentials are chosen. On the 
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other hand, the orthodox proof of our problem is 
based on the Bessis-Yukawa potentials. It is the main 
feature of our (Hartog's) proof of the Mandelstam 
representation that only Yukawa potentials are re
quired. 
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Plane-wave solutions with definite helicity are obtained for the field equations (S/lVPV + mY/l)1p = P/l1p. 
These equations are then rewritten in spino rial form. The relations between spinors, 4- and 5-dimensional 
tensors and spin-tensors, and the components of 1p are derived. 

1. INTRODUCTION 

In a previous paperl a de Sitter symmetric field 
theory was developed based on the equations2 

SABPB"P = PA"P, (1.1) 

where the SAB are the infinitesimal generators of the 
group SO(4, 1) and PA = (P/l' Ps = m) is the energy
momentum-mass 5-vector. It is interesting to note that 
these equations are completely equivalent3 to Salam's 
et al. generalization4 of the Bargmann-Wigner equa
tions.s Ten Kate,6 using the de Vos-Hilgevoord im
plicit form2 of Eqs. (Ll), wrote these equations in 
5-dimensional tensorial and spin-tensorial forms for 
all finite-dimensional representations RSO'l' A2) of the 
de Sitter group 0(4, 1). He also wrote these equations 
in spinorial form for the particular representation 
Rs(AI' AI)' However, he did not try to connect these 
tensors and spinors to the components of 'ljJ. These 
connections are particularly useful when one studies 
the quantization of the field and also when one tries to 
introduce a self-consistent interaction into Eqs. (1.1), 
which is by no means trivial. 

The purpose of the present paper is to write Eqs. 

(1.1) in spinorial form for all representations Rs(Al , A2) 
and to establish the connections between the compo
nents of "P, 5-tensors, spin-tensors, and spinors. The 
present paper is a continuation of the previous paper, 1 

hereafter called Paper I. We use the same notation 
as in Paper I. Formulas of that part will be denoted, 
for example, by (I.2.5) for Eq. (2.5) of Paper I. 

In Sec. 2 we express the Poincare components 
"P(Sl' S2) of "P in terms of Wigner's components 
"P(A2, 0) and "P(O, A2), which transform according to 
the unitary representations of the Poincare group. 7 

We evaluate the matrix elements of "P(Sl' S2) for plane
wave solutions with definite helicity along the z axis. 

In Sec. 3 we find the relation between "P(Sl , S2) and 
the corresponding spin or and derive the spinorial 
field equations. In Sec. 4 we find the relations between 
the spinors and the corresponding tensors or spin
tensors of SO(3, 1). 

In Sees. 5 and 6 we express the Poincare components 
in terms of the 5-tensor or the spin-tensor carrying the 
representation Rs(Al' A2)' The inverse relation is com
plicated. We derive it in the particular representations 
R6 (l, 0), Rs(l + h 1), and Rs(Al' AI)' 
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In the Appendix we give several useful relations 
between the fundamental spin or-vectors and spinor
tensors. 

2. PLANE-WAVE SOLUTIONS 

A. Relations Between the Poincare Components 

For convenience we denote the Poincare component 
by 

lSI, S2) = lJ!(SI, S2). 

Taking the matrix elem(:nts (Le., the Poincare block 
(sls21 "p» of the field equations in the forms (1.3.62) 
and (1.3.63), using Eqs. (1.3.23), (1.3.26), and (1.3.27), 
choosing dl = -i, d2 = 1, and then contracting the 
resulting equations with Va(Sl), Ua(SI + t), Vb(S2) and 
Ub(S2 + t), using Eqs. (I.3.28), one easily obtains the 
following equations: 

(AI + 1)(1 + x)(1 + y)vaCsl)pab lSI, S2) 

= m(2s1 + 1)[(1 + X)O __ Ub(S2) lSI - t, S2 - t) 
- (1 + Y)O_+Vb(S2 + t) lSI - t, S2 + t)], (2.1a) 

(AI + 1)(1 - x)(1 - y)Ua(SI + t)pab lSI, S2) 

= -m(2s1 + 1)[(1 - Y)O+-Ub(S2) lSI + t, S2 - t) 
+ (1 - X)0++Vb(S2 + t) lSI + t, S2 - t)], (2.1b) 

(AI + 1)(1 - x)(1 + Y)Vb(S2)pab lSI, S2) 

= m(2s2 + 1)[(1 - X)O __ Ua(SI) lSI - t, S2 - t) 
+ (1 - y)O+_VacSI + i) lSI + t, S2 - t)], (2.1c) 

(AI + 1)(1 + x)(1 - Y)U b(S2 + t)pab lSI, S2) 

= m(2s2 + 1)[(1 - y)O_+Ua(SI) lSI - t, S2 + t) 
- (1 + X)O++Va(SI + t) lSI + t, S2 + t)]. (2.1d) 

Here x = fll(AI + 1), Y = (A + 1)/(.1.1 + 1), fl = 
SI - S2' .1.= SI + S2' and () __ = (c_)t, etc., where 
the e's are given by Eqs. (1.3.40) and (1.3.41). 

where 

In particular, 

1 2).. 

1
0 ).) - IT pakbk 

, 2 - m2).2. (2A
2
)! k=1 

X Ra,-·.a2)' ().2) ® Pb, ... b.). ().2) 1).2, 0). (2.7) 
• 2 

Further, by successive application of Eqs. (2.2a) and 

By suitable contractions of Eqs. (2.1) we obtain the 
following equations: 

Va(SI)Vb(S2)pab lSI, S2) 

= [m(2s1 + 1)(2s2 + 1)0 __ /(.1.1 + A + 2)] 

X lSI - t, S2 - i), (2.2a) 

Va(SI)Ub(S2 + t)pab lSI, S2) 

= [m(2s1 + 1)(2s2 + 1)0_+/(.1.1 + fl + 1)] 

X lSI - t, S2 + i), (2.2b) 

Ua(SI + t)Vb(S2)pab lSI, S2) 

= -[m(2s1 + 1)(2s2 + 1)0+_/(.1.1 - fl + 1)] 

X lSI + t, S2 - i), (2.2c) 

UaCSI + !)Uh(S2 + t)pab lSI, S2) 

= [m(2s1 + 1)(2s2 + 1)0++/(.1.1 - A)] 

x lSI + t, S2 + t). (2.2d) 

For convenience, we introduce 

Pa,a.···a.,(s) = ua,(s)ua.(s - t)· .. Ua./!), 

Ra,a •... a •• (s) = va,(t)va.(I) ... va •• (s), (2.3) 
and 

Ta, ... a .. (SI , fl, .1.2) • 
= Ua,(SI)Ua.(SI - i) ... ua;._;..(t(A2 + fl + 0) 

X Va;'_;'.+1(t(A2 + fl + 1» 
x Va;._;..+z(t(A2 + fl + 2» ... Va2.P2). (2.4) 

Pa, ... a • .<s) and Ra, ... a.,(s) are (2s + I)-column and 
-row matrices, respectively, which are symmetric in 
the spinor indices. Ta ... a (SI' fl' .1.2) is a rectangular 

1 282 

matrix of (2s1 + 1)(2s2 + 1) rows and (2.1.2 + 1) 
columns; it is symmetric in the indices belonging to the 
u's and in those belonging to the v's separately. 

By successive application of Eqs. (2.2b) and (2.2d), 
we get 

(2.2c), we get 

lSI, S2) = (_l)'1.2+Jlm-281( A(A, fl) ) IT pakbk 
(.1.2 + fl)! k=l 

(2.5) 

X Pa, ... a •• ,(SI) ® n, ... b2S ,(S2' -fl, .1.2) 10, ).2)· 

(2.8) 
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In particular, 

We have thus related all Poincare components to 
Wigner's components IA2' 0) and 10, A2 ), which belong 
to the unitary representations of the Poincare group.7 

B. Solutions with Definite Helicity 

Consider the representation 

(ml ul(s) 1m' + t) 
= (m' + tl Vl(S) 1m) = (S - m)!t5mm" 

(ml u2(s) 1m' - t) 
= (m' - tl V2(S) 1m) = -(s + m)!t5mm" (2.10) 

where m = s, S - 1, ... , -So The other matrix ele
ments are obtained from the unitarity conditions8 

ua(s)+ = vacs), 

u<i(s) = ua(s), 

u<i(S)+ = v<i(s), 

v<i(s) = va(s), 

u<i(S) = -ua(s), v<i(s) = -va(s). 

In this representation 

(ml ~~l)(S) 1m') = mt5mm" 

(2.11) 

(ml ~P) =f i~~l) 1m') = [(s =f m)(s ± m + 1)]it5m',m±1' 

(2.12) 

where ~ill, ~~1l, and ~~1l are given by (U.7). Denoting 

P:
n 

= (m I pU"'122"'2(S», 

f~ = (m I Pll".122 ... l s», 
P:" = (m I pii"'i22'''2(S», 

p:,. = (m I Pii'" 122'" 2(S», 

where the indices 1 and 2 occur t and 2s - t times, 
respectively, and there is corresponding notation for 
R, we find that 

Rs-m' = Rs-m' = ps-m' = (_1)2sps-rn' 
-m m m _m 

i?."+rn' = (_1) 2sRs+rn' = ps+rn' = ps+rn' 
_m m -'tTl, m 

= (-1) 2Sbmm,[(s - m)! (s + m)!J!. (2.l3b) 

Further, denoting 

T';.M(Sl, fl-, A2) 

= (ml Tn ... 122"'211 ... l22"'2(Sl,fl-,A2) 1M), 
(2.14) 

where ° S r S A - ,12 and Os t S ,12 - fl- and the 
successive indices I, 2, 1, 2 occur r, A - A2 - r, t, 
and A2 - fl- - t times, respectively, we find that 

T';.M(Sl, fl-, A2) = ( _1)2S2
- tt5r+t,m+s2_M 

x {[(Sl - m)! (Sl + m)! (A2 - M)! (A2 + M)!]tl 

(S1 + m - r)! (A2 - M - t)!}. (2.15) 

The matrix elements lSI' ml ; S2' m2) of the Poincare 
component can be evaluated in general with the help 
of (2.8), (2.13), and (2.15). These matrix elements 
become particularly simple if we consider the propa
gation along the z axis, such that the components of 
momentum are PI = P2 = 0, P3 = P, and 

p11 =po + p, p22 =Po - p, 
p12 = p21 = 0, (2.16) 

where Po = ±(p2 + m2)!. In this case, 

282 

(ml' m21 II pa.bkYrll·· 'a2, (Sl ,fl-, A2) ® Pb l • •• 62• (S2) 1M, 0) 
k=l 2 2 

= ~ (A - A2)! (A2 - fl-)! (Po + pt(Po - PY 

rt r! t! (A - A2 - r)! (A2 - fl- - t)! 

x T~1.'II(Sl'fl-,A2)f::'is2)' (2.17) 

where (J = r + t and T'= 2s2 - r - t. Now, the non
vanishing matrix elements of ! .. .';:'/S2) are those with 
r + t = S2 - m2, and those of T:;lllI(Sl, fl-, A2) have 
r + t = S2 + m1 - M. Thus, the nonvanishing matrix 
elements of (2.17) are those with 

M= ml + m2 , 

r + t = S2 - m 2 • (2.18) 

= (_1)s+mt5 mm,[(s - m)! (s + m)!J!, (2.13a) Using (2.15), (2.17), and (2.18), we finally get 

I . ) - (1)A2-1'( (AI - A2 + 1)(A1 + A2 + 2)(A + fl- + 1)(A - fl- + 1) )! Sl, lnl , S2' m2 - -
(lAl + 1). (AI - fl- + 1)! (A'1 + fl + 1)! (AI - A)! (A + Al + 2)! 

x (PO - p)m2C(Sl' S2, A2; m1, m2, M) IA2' M; 0, 0). (2.19) 
Po + P 

Here C(Sl' S2' A2; m1, m2, M) is a Clebsch-Gordan coefficient. 
With the choice (2.16) of the momentum, the helicity is I:. p/p = ~3 = ~~l) + ~~2), where ~~1l and ~~2) 

have the eigenvalues m1 and m 2 • For a state of definite helicity ~3 = S, lSI ~ A2 , the nonvanishing matrix 
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elements (2.19) are only those with 

M= m1 + m2 = S. 

3. SPINORIAL FIELD EQUATIONS 

(2.20) 

The decomposition of 'lfJ into Poincare components 
lSI, S2) corresponds to the decomposition of the de 
Sitter group 0(4, 1) restricted to the proper Lorentz 
group SO(3, 1), or actually to its universal covering 
group SL(2, C). The two fundamental representations 
of the latter group D(t, 0) and D(O, t) are carried by 
the 2-dimensional spinors cPa and cf>b, respectively. 
Lowering and raising the indices is effected by the 
Levi-Civita symbols Eab = Eab = -Eba = _Eba, E12 = 
1, such that 

rl..a = Ebarl.. rI.. = E rl..b 
't' 't'b' 't'a ab't' , 

with similar relations for the dotted indices. The 
most general spinor will be denoted by 

(
hI' .. h2S') = rl..bl··· h"2 (3.1) 

Y--'al"'a2s • a
1 

••• a2S1 I 

It is symmetric in the a's and the b's separately, and 
ak and bk take on the two values 1 and 2. This spinor 
transforms irreducibly according to the representation 
D(SI' S2) of SL(2, C); it has (2s1 + 1)(2s2 + 1) inde
pendent components. It can be related to the Poincare 
component lSI, S2) as follows8

: 

( 
bl ... b2S') R () RbI' .. b. ( ) I ) = a1' .. a., SI @ '2 S2 SI , S2 , 
a

l 
.•• a2S1 I 

(3.2) 

(3.3) 

Rand P are given by (2.3) and satisfy the following 
relations: 

pal' "a2'(s)Ral"'a2,(S) = (2s)!, (3.4) 

Ral'''a.,(s)Pbl·''b·,(s) = (-1)2sRb1"·b"(s)Pal·"a./S) 
2. 

= 1 II O!ZI, (3.5) 
k=l 

where the summation extends over all permutations of 
the a's and the b's and I is the (2s + 1) X (2s + 1) 
unit matrix. One easily verifies that they also satisfy 
the following relations: 

28 

Ral"' a2'(S)Ua(s) = 1EaakRal"'ak-lak+I"'a2,(S - t), 
k=l 

(3.6) 
2s 

vis)Pa1"·a.,(s) = IEaakPal·"ak-Iak+I"·a.,(s - t), 
Ir""l 

For convenience, we introduce the following lower
ing and raising of indices of the energy-momentum 
spinor pab = s/bpp.: 

h ch a ad 
Pa = EacP , Pb = EhdP , 

Pba = EacPb = E6cP~ = Sp.haPp.· (3.8) 

The last relation follows from the identity 

(3.9) 

where Sp.ab and suba are given by (1.3.1) and (1.3.2), 
respectively. (See 'also the Appendix.) Multiplying the 
field equations (2.1) by adequate R's, using (3.6), we 
obtain directly the following four spinorial equations: 

(AI + 1)(1 + x)(1 + y)pah( hI ... h2S, ) 
aa1 ' •• a2SI- l 

= m(2sl + 1)[-(1 + y)O_+(bbl : : : b2s• ) 
al a2S1- l 

+ (1 + X)O __ ~Ehbk(hl ... bk- lbk+1 ••• b2S.)], 
k=l al ... a2S1-l 

(3.10a) 
(AI + 1)(1 + x)(1 - y) 

X 2!lp~k(bl ... b2s• ) 
k=l al ... ak- 1ak+1 .•• a2S1+1 

= m(2s1 + 1)[(1 - X)o++(bb1 : : : b282 ) 
al a2S1+l 

+ (1 - y)O+_~ibk(bl ... bk- lbk+l ... h2S2)] , 
k=1 al ... a2SI+1 

(3.10b) 

and similar relations for the dotted indices. 
(3.7) We get a hierarchy of spinorial equations (3.10) for 

all spinors with Al ~ Sl + 8 2 ~ .1.2 ~ lSI - 82 1. 
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In the particular representation Rs(A1' AI), Sl + S2 = 
A, Y = 1, ()++ = () __ = 0, and ()+_ = ()_+ = 1 [Eqs. 
(1.3.42) and (1.3.43)]. The field equations reduce to 
those of Dirac,9 as readily shown by ten Kate6

: 

ab( b1 ··· b;'l-1' ) _ (bbl' .. bA1-1' ) P - -m , 
aa1 ... aA1+1'-1 a1 ... aA1+1'-1 

Pha(bb1 · .. bA1-1'+1) = -m( bl ··· bA1-1'+1) , (3.11) 
al ... aA1+1' aal ... aA1+1' 

for all fl = AI' Al - 1,'" , -AI' 
Wigner's components IA2' 0) and 10, A2) are directly 

related to the spinors 

(a l '" a2A2) = ~a1"·a2A2 = Ra1'''a2A2(A2) IA2' 0), 
(bl ··• b2A2) = ~b1·"b2A2 = Rb1,,·b2A2(A2) 10, A2)' 

(3.12) 

Multiplying Eqs. (2.7) and (2.9) by RC1'" C2A2(A2) and 
RC1'" C2A2(A2), respectively, using (3.5), it is easily veri
fied that these spinors satisfy Weinberg's equationslO 

in all representations Rs(A1' A2): 

4. RELATION BETWEEN TENSORS AND 
SPINORS 

A. Pseudotensors 

The irreducible representations R4(A, fl) of the 
proper Lorentz group SO(3, 1) are characterized by 
two integers or two half-integers, A and fl, where 
A ~ Ifll and fl may be positive or negative. The 
corresponding equivalent representation D(sl' S2) of 
the universal covering group SL(2, C) is that with 
A = SI + S2 and fl = Sl - S2' The double-valued rep
resentations of SO(3, 1) are those with A and fl half
integral; they actually belong to SL(2, C). SO(3, 1) 
possesses three fundamental representations 

Ril,O) = D(!, t) "-' II' "-' ~~, 
Ril, 1) = D(I, 0) "-' f(l'v)+ "-' ~ab' (4.1) 

R4(1, -1) = D(O, 1) "-' f(l'v)- "-' ~ab, 

where II' is a 4-vector and f(l'v)+ and f(l'v)_ are antisym
metric self-dual and anti-self-dual tensors, each of 
three independent components, such that 

(4.2) 

These are pseudotensors, transforming into each other 
under spatial inversions. The connection between 
these tensors and the corresponding spinors of SL(2, 

C) are as follows8 : 

II' = S~b~~ = S~hVamvbm It, t), 
fifJvl+ = sl'Vab~ab = sI'VabvaCt)vb(l) 11, 0), (4.3) 

fi 
- - . -I-ub - - .. "(1) b(l) 10 I) 

(I'V)- - Sl'vab'l' - Sl'vabV 2" V ,. 

The inverse relations are 
-I-b _ 1 b I' 
'l'u-'2"Sl'aJI" 

~ab = }sl'vabfil'v)+, (4.4) 
-I-ub _ 1 - abfi 
'I' - 8 SI'V (I'V)- • 

Here s ab and sab are obtained by lowering indices of 
. I' I' .' 

S abo We define S ab and s ab in the Appendix. They 
I' I'V I'V 

are self-dual and anti-self-dual antisymmetric tensors 
in the indices flY, respectively, and symmetric in the 
spinor indices ab and db. 

The irreducible tensor, transforming according to 
R4(1 + n, ±n), where I and n are nonnegative integers, 
is of the form 

l[a1' .. a 1][(1'1 V1) ... (I'nvn)]± • (4.5) 

It is symmetric in the indices ('J.i and also in the sub
brackets (fliYi)' Each subbracket (flY) is antisymmetric. 
All sub brackets are self-dual in the representation 
R4(l + n, n) and anti-self-dual in the representation 
R4(1 + n, n). They are denoted correspondingly by 
[(flIY1) ..• (flnYn)]+ and [(fl1Yl) .•. (flnYn)L. The ten
sor (4.5) is traceless with respect to contractions of any 
two indices. 

We note, however, that the irreducible tensors can 
also be of the form 

!r.a1·· 'aK][{l'lV1)'" (I'LVL)]+[(aP1)'" (a.IfTM)]-' (4.6) 

which transforms according to Rs(K + L + M, 
L - M). This tensor can be rewritten in the form 
(4.5) with n = IL - MI and 1= K + L + M-
1L - MI, with signature ± = (L - M)/IL - MI. 
Using (4.3), we obtain the connection between the 
tensor (4.6) and the corresponding spinor as follows: 

!r.a1·· 'aK][(I'lV1)'" (fJLVL)]+[(ap1)'" (aMTM)]-

K L M 

II S a;. II S ei!i II -= ~i b i IljVj SakTkcJcdk 
i~1 j~l k~1 

x(b l ···bK (\dl "· CM dM ). (4.7) 
al ' .. aK edI'" eLIL 

In the previous notation 

A = K + L + M, fl = L - M, 
(4.8) 

For the same representation D(sl' S2), we can con
struct several tensors of the form (4.7) by taking all 
possible values of K, L, and M which are consistent 
with (4.8). Using the contraction relations between 
s/b' sl'V

ab
, and sl'vab' given in the Appendix, one can 
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easily prove the following tracelessness conditions: 

/r.aaaa·· 'aK]{(PiVi)}+{(O'jTj)}- = 0, 

.f{ai)[(/lV1)(/lV2)(pava)·· 'l±{(O'jTj)}'F = 0, (4.9) 

/r.aa2··· aK][(av!l(P2V2)" ']±{(O'iTi)}'F = 0. 

Besides, one establishes the following connection 
between equivalent tensors: 

/r.a1· .. aK ][(/lV1)(/l.V.) ... (/lLVL) ]+[(/l T1 )(0'2T2) ••• (0' MT M)]-

= 2/r.a1··· aKV1 T1][(/l2V2) ..• (PLVL)]+[(0'2T2) ••• (O'MT .. >1)]- • (4.10) 

Further, using (3.l0a), we get 

Pa/r.aa •• .. aK]{(/liVi)}+{(O'jT,)L 

= -m[(2s1 + 1)(2s2 + 1)O __ /(Al + A + 2)] 

X /r.a2' .. aK]{(PiVi)}+{(O'jTj)}_ , (4.11) 

where SI and S2 are given by (4.8). 

B. Spin-Tensors 

For half-integral spin the representations R4(A, fl) = 
D(SI' S2) are characterized by half-integral values of 
A and fl, such that SI is integral and S2 is half-integral, 
or the contrary. The corresponding spin or has an odd 
number of indices. We construct in this case the spin
tensors 

la[a1" 'aK][(/llV1)'" (/lLI'L}J+[(0'1T1)'" (O'MTM)]-

K L M 

= IT Saia'h i IT s/ljv/i!i IT SO'kTkCkdk 
;=1 i=1 k=1 

X ( b1 ·,· bK c1d1··· CMdM ) , (4.12) 
aa1 • , , a K edl'" eLfL 

transforming according to R4(K + L + M + 1, L -
M + i), and 

fta1" 'aK][(P1V1)'" (/lLVL)]+[(O'lT!l'" (O'MTM)]-

K L M - IT ai IT ej!j IT - ' 
- Sai hi SpiVj S"kTkCkdk 

;=1 ;=1 ,,=1 

X 
(

bb1 '" bK (\d1 ••• CMdM ) , 

a1 ••• aK edl'" eLfL 
(4.13) 

transforming according to RiK + L + M + t, 
L - M - t). These spin-tensors transform as 4-dimen
sional tensors in the Greek indices and as 2-dimen
sional spinors in the indices a and b. They satisfy the 
irreducibility conditions (4.9), as well as relation 
(4.10), for each spinor component. One easily verifies 
that they also satisfy the following relations: 

s~~Ia[a1a2 ••• aK]{(PiVi)}+{(O'jTj)L = 0, 

Sa1haf~a1a2'" aK]{(/liVi)}+{(O'iTj)}- = 0, 

S/11
ah 

la{ai)[(/llV1)(/l2V')'" (/lLVL)]+{(O'jTj)}_ = 0, 

SO'lha.f{!i){(/ljVj)}+[(O'l T!l("2T2)'" (O'MTM}J_ = 0, 
ab I' 

SO'l ja[a1" 'aK]{(/liVi)}+[(0'1T1)(0'2T2)'" (O'MTM}J_ 

= 2fta1'" aKTll{(/ljVj»)+[(0'2T.) ••• (O'MT M)]- , 

s/llhnfra1'" aK][(/llV1)(/l2V2)'" (/lLVL}J+{(O'iT/)L 

(4.14a) 

(4.14b) 

(4. 14c) 

(4.14d) 

(4.14e) 

- 21a[a1 ••• aKvll[(/l2V2)' .. (/lLVL)]+{(O'iTi)}_ • (4.14f) 

Further, it is easily verified that each spinor com
ponent satisfies Eq. (4.11). Also, 

M . ) + 2 'i.S"kTk
b Cf[~l" 'aK](/liVi»)+[(0'1T1)'" (O'k-lTk-1)(O'k+1Tk+1)'" (O'MTM)]_ ' 

k=1 

(4.15) 

Phafra1'" aK][(/llV1)'" (/lLVL)J+{(O'iTi)}-

- m[(2s2 + 1)fJ+_/(Al - fl + 1)]!a[1X1' "IXK][(/liVtl .. · (PLVL}]+{(O'i,Ti)}-

- m[(2s2 + 1}tl--/()"1 + A + 2)](ISakhafta1 ••• ak-1ak+1"'IXK][(/llVl)"'(/lLVL}J+{(O'iT;)}-
k=1 

We note that, with each two-valued representation 
R4(A, fl) of the proper Lorentz group, we can associate 
a spin-tensor of the form 

(4.16) 

with A = K + L + 1 and fl = L + t, or a spin-tensor 
of the form 

(4.17b) 

(4.17a) with A = K + L + i and fl = -(L + i)· 
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5. 5-TENSORS 

A. The Poincare Components in Terms of the 5-Tensor 

The S-dimensional tensor carrying the representa
tion Rs(l + n, n) of 0(4, 1), where I and n are two 
nonnegative integers, is of the form 

T[Al" 'Az][(B1Gl)'" (BnG,,)]' (5.1) 

It satisfies the irreducibility conditions 

1[AAAs"'Az]«B;G;)) = 0, (S.2a) 

T (A;)[(BG1)(RG.) .•. (B .. G .. )] = 0, (S.2b) 

E Bl G1B2DE T (A;}[(BI Gl)(B2G2) ... (E .. G .. )] = 0, (S.2c) 

1[AA2' "Az][(AGl)(B2G2)] = 0, (S.2d) 

EA1B1G1DET[A1A2'" Az][(B1Cl)(B.G2)·'· (EnG,,)] = O. 
(5.2e) 

The field equations, corresponding to Eqs. (Ll) and 
satisfied by the tensor (5.1), are6 

PAl1[AIA""AZ](BiGi)) = 0, (5.3a) 

PBl T (A;}[UhGl)(R.G.)"· (E .. G .. )] = 0, (5.3b) 

EB1GIDEFPD T{A;}[W1Gl)(B2G.) ... (R"G .. )] = 0, (5.3c) 

P A 1[A1A2' .. AZ]{(E;Gi)} = P Al1[AA2' .. Az]«B;C;)} • (5.3d) 

F or convenience we denote the different 4-dimensional 
components of the 5-tensor (5.1) as follows: 

T O- t ) 
[~l ... ~t][Pl ••• P,,-k][(l1l vd' .. (l1kVk)] 

= 1[~1" '/Xt 55' .. 5][(5Pl)(5P.) ••• (5P .. _k)(111Vl) .•• (l1kVk)] • (5.4) 

The number of indices 5 in the first completely sym
metric bracket is 1- t. This 4-dimensional tensor is 
reducible under SO(3, 1). From this tensor we can 
construct the irreducible traceless tensor 

(5.5) 

which carries the representation R4(n + t, ±k). The 
totality of the tensors (5.5) with 0 ~ t ~ I and 0 ~ 
k ~ n afford a basis for the representation R5(l + n, 
n). In fact, this corresponds to the decomposition 

I n 

R5(l + n, n) = L L EEl Rin + t, k). (5.6) 
t=o k=-n 

Since (5.5) can be related to the Poincare component 
lSI, S2) via the corresponding spinor, we can relate 
IS1> S2) direct to (5.4) as follows: 

If S1 ~ S2' we take 

2s1 = n + t + k, 2s2 = n + t - k, 

Then, in favor of (3.3) and (4.7), we have 

t n-k k 

lSI, S2) = 2- l1a(A, "') II Sit/a/b; II SPiel dl II SI1,v/
rf

, 
i=l 1=1 r=l 

T (!-t) 
X [It 1 ..• ~t][Pl ., • P .. -kl[(l1l vd ... (l1kVk)] 

X Pal'" at Cl ••• C .. _k "1ft· .. ekf.( S1) 

® pbl .. ·btdl· .. d .. -k(S2)' (5.8) 

On the other hand, if Sl ~ S2' we take 

2s1 = n + t - k, 2s2 = n + t + k, 

J. = n + t, '" = -k. (5.9) 
Then 

t n-k k 

lSI, S2) = 2I1b(A, (t) II Sltiaib; II SPICI dl II 811,v,e,;, 
i=1 i=l r=l 

T <I-t) 
X [It 1 .•• Itt][Pl ••• P,,-k][(l1l VI) ••• (l1kVk)] 

X Pal'" at Cl'" C .. _k(SI) 

® pbl ... btdl"·d"_.~lil."~.h(S2)' (5.10) 

where a(A, (t) and b(A, "') are coupling coefficients 
which depend on the field equations satisfied by 1jJ. 

To determine the coupling coefficients for the free 
field, we use Eqs. (2.2) and (5.3). With the help of 
relations (3.7) we get, after some lengthy manipula
tions, the following relations. Applying Eq. (2.2a) for 
(5.8) and (5.10), we get 

a(A,{t) b(A,{t) 

a(A - 1, (t) b(A - 1, (t) 

(A + {t + l)(A - {t + 1)0 __ 
(AI + A + 2)(A - A2)(A + A

2
)' (5.11) 

where Al = 1+ nand A2 = n; by applying Eq. (2.2c) 
for (5.8), we get 

a(A, (t) = -(A + {t + l)(A - {t + 1)0+_ . 

a(A, (t + 1) (A2 - ",)0'1 - '" + 1) 

(5.12) 
finally, applying Eq. (2.2b) for (5.10), we get 

b(A, (t) = (A + {t + l)(A - {t + 1)0_+ 

b(A, (t - 1) (A2 + {t)(Al + (t + 1) 
(5.13) 

From these recurrence relations, using (1.3.40) and 
(1.3.41), we get 

b(A,{t) = (_1)A
2-l1a(A,{t) 

= H(A + A2 + 1) . (2A2)!]/[(2A2 + 1) 

. (A2 - ,u)! (A2 + {t)!]} 
X A(A, (t)a(A'2, A2), (5.14) 

where a().2, ).2) is an arbitrary normalization constant 
and A()', (t) is given by (2.6). We note that a()., 1') and 

). = n + t, (t = k. (5.7) b()', (t) are defined for {t~ 0 and {t ~ 0, respectively. 



                                                                                                                                    

2022 BAKRI, GHALEB, AND HESSEIN 

The inverse relation for expressing the components 
(5.4) in terms of the Poincare components is com
plicated in the general case R5(l + n, n). We next 
consider the two particular representations Rs(l,O) 
and R5(n, n). 

B. The Representation Rs(l, 0) 

The tensor carrying this representation is TCAl •• . A,l • 

Its 4-dimensional components T[~~~'>.akl' 0 ::;; k ::;; I, 
satisfy the condition 

consider the inverse relation 

d'k] 

where 

P[al' .. <%k] = I bt(k)T~~~'::~~k~)' 
t=o 

(5.23) 

(5.24) 

Comparing the leading terms in (5.16) and (5.23), we 
get 

(5.25) 

T
U- k ) _ T(Z-k+2) 
[a""3' •• <%k] - - [a3'" ak] • 

(5.15) Now, in favor of (5.15), we have 

These 4-tensors are not traceless. They can be ex
pressed in terms of traceless tensors F[<%l" • a.] as 
follows: 

dk] 
T(!-k) - '" (k)p(2t) 

[al' •• ak] - £., at [al' •• ak] , (5.16) 
t=o 

where [!k] is the integral part of tk and 

pi;;), ,. ak] = I c5ala2 ' , , c5"21_1IXUF[IX2t+1 ' , 'lXk]; (5,17) 

the summation extends over all permutations of the 
oc's. The coefficients at(k) are determined partially by 
the condition (5.15). Noting that 

T(l-k+2t.2t) 
[alX<%3' •• <%k] 

= 2(k - t + 1)T(!-~+2t.2t-2) _ T(l-k+2t+2•2tl 
[<%, ••• <%k] [a.· , • ak] • 

(5.26) 

Thus, from the tracelessness condition F[IX<%<%3'" <%k] = 0, 
we get 

Hence, 
bt_ 1(k) = 2(k - t + l)btCk). 

bik) = [(k - t)!/(2t • k!)]bo(k). 

Now, from the field equation (5.3d), we get 

T (l-k) - -k • • • TI!) 
["'l"'''k] - m P"l Pak ' 

(5.27) 

(5.28) 

(5.29) 

P(2t) 2(k + 1)p(21-2) 
[IXIXa3" • IXk] = - t [1X3°O • ak] , 

we obtain the recurrence relation 

(5.18) where T(l) = Ts5 • ,,5 is a Lorentz invariant. Noting 
that P/lP/l = -m2

, we get 

at_l(k - 2) = -2(k - t + 1)alk). (5.19) 
Hence, 

Pa T(Z-k+2t.2t) = (k _ 2t + 1)TH-k+2t-l.2t-2) 
m [""2' • '<Xk] [<%2' •• <Xk] 

alk) = (-tY[(k - 2t + 1)!/(k - t + l)!]ao(k - 2t), - T~~-;~.2!~1,2t) (5.30) 

(5.20) Further, from (4.11) and (1.3.49), we get 

where ao(k) remains arbitrary and depends on the 
field equations satisfied by the tensor T[AI -."A,]' 

To express T:!~~!'IXk] in terms of the Poincare com
ponents Ilk, tk) of the representation with 0 ::;; k ::;; I, 
we need only express the irreducible tensors F["l" '''k] in 
terms of Ilk, tk). For convenience, we write 

1 (U- k)!(l + k + 2)!)l 
P["l"'''k] = (k + 1)! k + 1 !r.wooltk]' 

(5.21) 

wherej["l'''''k] is defined by (4.7). Using (3.2), we get 

hal' .. Itk) = IT s",ai
h, (hl ... bk

) 

,=1 a1 ••• a k 
k _ _ 

= II S",a'b,Ral • oOa.(lk) ® RbI' oObk(tk) Ilk, lk). 
i=1 

(5.22) 

In order to determine ao(k) for the free field satis
fying Eqs. (5.3a) and (5.3d), it is more convenient to 

Using (5.23), (5.30), and (5.31), we obtain the re
currence relation 

btCk) = bik - 1) + (k - 21 + l)bt+l(k). (5.32) 

Combining (5.28) and (5.32), we get 

boCk) = l/ao(k) = 2k/(k + 1), (5.33) 

where, for convenience, we choose ao(O) = bo(O) = 1. 
Hence, 

ht(k) = 2k- t • (k - t)!/(k + I)! (5.34) 
and 

alk) = (-I)f[(k - 2t + 1)· (k - 2t + 1)!]/ 

[2 k - t • (k - t + 1) n. (5.35) 

C. The Representation Rs(n, n) 

The carrier of this representation is the ten
sor T[(BI0

1
). 00 (BnOn»)' We denote its 4-dimensional 
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components as follows: 

r/>[Pl'" Pn-k][(/JIV1)'" (/JkV,)] 

= T[(sPl)'" (SPn_k)(/JIV1)'" (l'kV,)], (S.36) 

for all ° ~ k ~ n. For convenience, we denote the 
dual subbracket as follows: 

(flY) = tE/Jvairx{3). 

The irreducibility conditions (S.2b) and (S.2c) read in 
the 4-dimensional notation as follows: 

r/>[PPP3'" Pn-k]{(/J,V,)) = 0, (S.37a) 

r/>[PP2 ... Pn_k][(PV1)(/J2V2) ... (/J'V')] = 0, (S.37b) 

r/>[PP2'" Pn-k][(PV1)(/J2V2)'" (/J"Vk)] = 0, (S.37c) 

r/>{Pi}[(/JV1)(/JV2)(/J3V3) ..• (/JkV.)] = 0, (S.37d) 

r/>[Pl' .• Pn-k][{/JV1)(/JV2)(/J3V3) .•• (/JkVk)] 

= - r/>[Pl .•• Pn-kVl V2][{/J3V3) ••• (/J,Vk)] • (S.37e) 

The 4-dimensional irreducible tensors constituting a 

satisfied by the tensors. 
To determine clk) for the free field, we use the 

field equations 

PPr/>[PP2'" Pn-k]«/JiVi)) = 0, (S.43a) 

P/Jr/>{P')[(I'Vl)(/J2V2)'" (l'kVk)] = 0, (S.43b) 

P/Jr/>[Pl'" Pn-,][(/JV1)(1'2V2)'" (/JkVk)] 

= - mr/>[Pl ••• Pn-kvtl[(/J2V2) .•• (/J,Vk)] • (S.43c) 

Further, from (4.11) we get 

PPfr.PP2" • Pn-k]{(/JiVi)}+{(aiT,)}_ = 0, (S.44) 

since in this representation () __ = ()++ = 0, ()+_ = 
()_+ = 1, A = S1 + S2 = n, and fl = S1 - S2 = ±k. 
Moreover, using (3.l0a), C3.1Oc), and (4.7), we get 

P/Jfr.PI ... PK][(/JV1)(/J2V2) •.. (/JLVL)]±{(O'iTi))'F 

Thus 
= T mfr.Pl ... PKv!l[{/J.V2) •.. (/JLVL)]±{(O'iTi)}'F • (S.4S) 

( /
m)F(t.k-t) 

basis for this representation are PI' [PI' •• Pn-k][(/Jv!l(/J2V2) •.. (/JkV,)] 

for all ° ~ t ~ k ~ n. They are defined by (4.7) and 
satisfy (4.9). They are self-dual and anti-self-dual in 
the subbrackets with subscripts + and -, respectively. 
We note that the conditions (S.37a)-(S.37d) are com
mon for the tensors r/> and f This suggests that r/> may 
be written in the form 

r/>[Pl •.. Pn-k][(/Jl VI) ... (/JkVk)] 

k 

where 

= L ct( k )Fi1'1~-::)Pn_k][(1'1 VI) •.. (/JkVk)] , 
t=o 

F (t.k-t) 
[Pl'" Pn-k][(l'lVl)'" (/JkVk)] 

(S.38) 

= Lhpl'" Pn-k][(1'1 vd'" (I',Vt)]+[{/J/+IVt+l)'" (l'kVk)]-' 

(S.39) 

Here t and k - t are the numbers of self-dual and 
anti-self-dual subbrackets, respectively. The summa
tion implies symmetrization in all subbrackets (fliYi)' 

From (4.10) we have 

F (t.k-tl 
[Pl'" Pn-k][(/JVI)(I'V2)(/J3 V3)'" (l'kVk)] 

_ 4F(t-1.k-t-l) 
- [Pl'" Pn-kVIV2][(/J3V3)'" (l'kVk)]' (S.40) 

Using (5.37e), (5.38), and (5.40), we obtain the recur
rence relation 

ct_l(k - 2) = -4ctCk). (S.41) 
Thus 

(5.42) 

This relation holds irrespective of the field equations 

F(t k-t-l) 
= [PI" • Pn-kVl][(/J2V2) ••• (/JkVk)] 

F(t-l,k-t) 
- [Pl' •• Pn-kVI][(/J2V2) ... (/J,Vk)] , 

and 

(p /
m)F(t,k-t) 

- I' [Pl' .. Pn-k][(iiV!)(/J2V2) ••• (l'kV,,)] 

F
(t,k-t-l) = [Pl' •• Pn-kVl][(/J2V2)' •• (/JkVk)] 

+ F(t-l,k-t) 
[Pl' •• Pn-kV!l[(/J2V2) ••• (/JkV,)] , 

From (S.38), (S.43b), and (S.46) we get 

ct(k) = -ct_l (k), 

and from (S.43c) and (S.47) we get 

ct(k - 1) = CHl(k) - ct(k), 
Hence 

ctCk) = (-1)t+k2-kc(0), 

which is consistent with (S.41). 

6. 5-SPIN-TENSORS 

(S.46) 

(S.47) 

(S.48) 

(S.49) 

(S.SO) 

A. The Poincare Components in Terms of the 
5-Spin-Tensor 

The representations Rs(Al' A2) with half-integral Al 
and A2 actually belong to Sp(2,2), the universal 
covering group of SO(4, 1). The carrier of the repre
sentation Rs{l + n + t, n + t) is the spin-tensor6 

1[AI'" AI][(BIOI)'" (BnOn)] 

- (TeAl" 'A,][!BI01)'" !BnOn)]) (6.1) 
- Tt[AI'" A,j[(BIOI)'" (BnOn)] • 

It is a 4-column matrix, transforming as a tensor in 
the indices Ai and (BiC;) and as a spinor in the indices 
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a and h. In particular, 

T = (~:) (6.2) 

is a Dirac 4"spinor, transforming according to the 
fundamental representation R5(t, t) of Sp(2, 2). In 
this representation the pseudovector r A, defined by 
(1.2.1 5), is expressed in terms of the Dirac matrices 
YP as follows: 

r P = Y5Yp , r5 = Y5 = -YIY2YaY4' (6.3) 

The spin-tensor satisfies the irreducibility conditions 
(5.2) together with 

r A 1[AA.··· AI]{(B,Ci)} = 0, 

r B 1{Ai)[(BCIlCB2C2) ... (BnCn )] = 0. 

(6.4a) 

(6.4b) 

It satisfies the field equations (5.3), together with6 

rAP A 1{Ai}{(B;C;» = 0, (6.5) 

which is just the Dirac equation (multiplied by rs) 

(yPPP + m)1{Ai}{(B;Cj)} = 0. (6.6) 

We denote the components of (6.1) in the same way as 
in (5.4), except for adding an upper suffix a ora 
lower suffix b. 

Consider the following representation of the Dirac 
matrices.: 

-Sk) .(0 I) (I o ' Y4 = I 1 0 ' Ys = 0 

where the Sk are the Pauli matrices. The matrix ele
ments of Yp are then 

YP = (0 -OSll

ah

). (6.7) 
-Spba 

Conditions (6.4) become 
ahT<I-t) TaU-HI) 

S~I h[~1~2' .. ~tl{p,}(p;v;)} = [~2 ••• ~t]{Pi}(PiVi)}' 

T
aU-t) 'T'(!-t + 1) 

S~lba [~1~2'" ~tl(Pi}{(P;V;)} = 1 b[~2' .. atl(Pi}(PiVi» , 

ahT<I-t) ° 
Spi . h(~i}[PIP2" ']«p;V;)} = , 

Sp,ha T{~:i[;~P2" ']((P;Vi)} = 0, 
abTU-tl 

SPI b(ai}[p"" Pn_k][(PIVIlCp2V2)"'] 

T aU- t ) = (~i}[PI'" Pn-kV,][(1l2V2)"'] ' 

(6.8a) 

(6.8b) 

(6.8c) 

(6.8d) 

(6.8e) 

For each spinor component of Twe can construct a 
spin-tensor of the form (4.17). Thus the Poincare 
components can be written as follows: 

For SI > S2' we take 

A = n + t + t, f-l = k + t, 
2s1 = n + t + k + 1, 2s2 = n + t - k. 

Then 
t n-k k 

lSI, S2) = 2-1l+!a(A, f-l) IT S~.'\i IT Sp/; di IT Spr.:r!r 
;=1 ;=1 r=1 

X Ta(!-t) 
['" " . "t][P, ... Pn-k]£<PI VI) •.. (PkVk)] 

X P aa, ... at CI .•• Cn_k "It ... ek!k( SI) 

® p hl·"ht d,"·dn-k(S2)' (6.10) 

On the other hand, for Sl < S2' we take 

A = n + t + i, f-l = -(k + t), 
2s1 = n + t - k, 2s2 = n + t + k + 1. 

Then 
t n-k k 

lSI' S2! = 21l+!b(A, f-l) IT S",aih; IT Sp;Ci di IT SprVrerjr 
;=1 ;=1 r=1 

X Tlt;:~·· ~tl[PI .•• Pn-k][(PI VI) ••. (llkVk)] 

X Pa"" at CI' •• Cn_k(SI) 

® phhl ,,·htd, "'dn-kh""';'kik(S2)' (6.11) 

Following the same steps as in Sec. SA, using (6.8) 
and (6.9), one verifies, after some lengthy manipula
tions, that a(A, f-l) and b(A, f-l) are given by (5.14), 
where Al = 1 + n + t and A2 = n + t. 

B. The Representation R5(l + !, !) 
The carrier of this representation is the spin

tensor T[AI"'A d . Its 4-dimensional components are the 
spin-tensors Tg~~!. ~kl' 0 ::::;; k ~ I. We construct the 
spin-tensors of the Rarita-Schwinger typell 

(6.12) 

where fi~i} andfh{~i} are given by (4.13) and (4.14), by 
raising and lowering the spinor indices. Using the 
representation (6.7) for YP ' one verifies that the spin
tensor (6.12) satisfies the conditions 

(6.13a) 

(6.13b) 

= Th(~'}[PI'" Pn_kV,][(1l2V2) " .] . (6.8f) in favor of (4.14). Further, we introduce the spin-

Also, Dirac's equation (6.6) reads 

ah'T'. _ Ta P 1b{} - m {}, 

PhaT'{} = mTb{ }, 

where { } stands for all tensorial indices. 

tensor 

(6.9) 

k 

G[«1' .. «.1 = I y «,F["1 ... "'-1"'+1 ... «k] 
;=1 
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where 
k 

g[«l' , '«k] = - Z S~~/h[«l . , '«/-1«/+1' ,. «k] , 
i=1 
k 

gb[«l'" «k] = - Z Sa/ba!r.al'" "'1-101/+1'" "k]' (6.14b) 
i=1 

One easily verifies that G satisfies the following con
ditions: 

G[m."'«k] = 0, (6.15a) 

YaG[«a." 'ak] = -2(k + l)F[«a"'''k]' (6.15b) 

F and G are related to the Poincare components 
IHk + 1), tk) and Itk, Hk + 1» in the usual way. 

The components of T can be written in the form 

[lk] [lk] 

T~!-;:~!.ak] = Z Alk)FI!~)" 'ak] + Z Bt(k)G~;~)", "k]' 
t=o t=1 

( 6.16) 

where F(2t) and G(2t) are defined by (5.17). They 
satisfy Eq. (S.18). In addition, they satisfy the follow
ing equations: 

F(2t) _ G(2t-21 
l' al [a1a2'" ad - [a • .. 'ak] , 

Ya1G:;~~." 'ak] = -2(k - t + l)Fi;:I .. 'ak]' 

T satisfies (5.1S), together with 

T
<I-k) T(!-k+l) 

ra1 ["1«2"'ak] = - [a,"'ak]' 

(6.17a) 

(6.17b) 

(6.18) 

Using Eqs. (5.1S) and (S.18), it is easily verified that 
At(k) and Bt(k) satisfy both relations (S.19) and (S.20). 
Further, using (6.17) and (6.18), we get 

At(k) = -Bt-l(k - 1), (6.19a) 

AtCk - 1) = 2(k - t + l)Bt(k). (6.19b) 

Equation (6.19b) is derivable from Eq. (6.19a), in 
favor of Eq. (S.20). Thus we get one relation between 
AtCk) and Bt(k). 

To determine At(k) and Bt(k) completely, we use 
the field equations. From (4.1S), (4.16), (1.3.48), and 
(1.3.49) we get 

(k + 1)(1' IlPIl/m)F["l''' ak] + F[w" ak] 

= -(k + 2)[(1 - k + 1)/(1 + k + 3)]lG[a1" 'ak]' 

(6.20) 

Further, using (3.10), (4.l2), and (4.13), we obtain, 
after some lengthy manipulations, 

(k + 1)(YIlPIl/m)G[a1"' ak] - G[a1"'ak] 

= -k[(l + k + 3)/(1- k + 1)]iF[a1'''ak]' (6.21) 

Using Eqs. (6.20) and (6.21) together with the Dirac 

we obtain the relation 

Bt(k) = r(1 - k + 21 + 1)/ 
(l + k - 2t + 3)]lAt(k). (6.23) 

Using (6.19b), we get 

2(k - t + l)At(k) = [l + k - 2t + 3)/ 

(I - k + 2t + l)]iA t (k - 1). (6.24) 

Using (5.20) and (6.24), we get 

At(k) = (-IY{I/[2k- t • (k - t + I)!]) 

x [(l + k - 21 + 3)! (I - k + 2t)!/ 

(I + 3)! 1!]tAo(O). (6.25) 

Bt(k) is then determined from (6.23). 

C. The Representation R5(n + t, n + 1) 

The components of the spin-tensor T[(BiGi ), .. (B"G,,)]' 

carrying this representation, may be written in the 
form 

k 

T u ~ C (k)Fa(t.k-t) 
[Ill'" 1I,,-k][(lllVt!··· (llkVkl] = k t {1/}{lllv»' (6.26) 

t=O 

k 

n[1/1'" 1/,,-k][llllV1)'" IllkVk)] = Z Dt(k)Fb\~f«:~», (6.27) 
t=O 

Ff\t.k-t> and Ft(~-t) are defined by (S.39) in terms of 
the corresponding spin-tensors. They satisfy the same 
contraction conditions and field equations as (S.39). 
Thus CtCk) and Di(k) satisfy (5.41) irrespective of the 
field equations. For the free field they are both given 
by (5.50). 

Using Eq. (4.14), one easily verifies that 

Fu(t.k-t) 
Slllba [Ill'" IIn-k][(IllVt!··· (llkVkl] 

= - 2Fbtff;t:-:Vn-kV!l[(Il,V2)'" (llkVk)]' 
ubFlt.k-t) 

Sill b[1/1'" 1/,,-k][(I'lV1)'" IllkVk)] 

(6.28) 

(6.29) 

These relations, together with (6.8c) and (6.8d), give 

Dt(k - 1) = -2Clk), 

Clk - 1) = 2Dt+l(k), 

which are consistent with (5.41). 
Further, from (4.lS) and (S.16) we get 

P Fa(t.k-t) _ mFlt .k- t ) 
ba {} - 6{}, 

P
abF{t.k-t) _ mFaCt.k-t) 

b{) - {} • 

(6.30) 

(6.31) 

Using Dirac's equation (6.9) together with (6.31), we 
finally get 

(6.32) 

equation Equations (6.30) and (6.32) lead to (5.40), proving the 
(6.22) self-consistency of the choice (6.26) and (6.27). 
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APPENDIX 

We give here some contraction relation!. between 
the spinor-vectors spah, which are the matrix elements 
in the row a and the column b of the matrix s,., 
defined by 

(
0 -i) 
i ° ' 

(
-i 0.). ° -1 

(AI) 

We construct further 

One easily verifies that 

S - sao - sao kab - - k' S4ab - 4 , k = 1, 2, 3, (A3) 

in accordance with the definition (1.3.2). The following 
relations hold: 

SpaOS,.Cd = _2eaci d, 

ab - 2~ Sp Svba - - Upv' 

(A4) 

(AS) 

(AS) 

Further, we introduce the fundamental spinor-tensors 

and 

- ah - ha - ab ]. - ab 
S,.v = Spy = -sv" = -'lE"v~pS~p 

= l(S cas b + s cbs a ) 
2" "vc "vc 

= {s,."as}c, ~f f-l:F v, 
0, If f-l = v. (A10) 

They satisfy the following relations: 

S"v abs~Pab = 2( E,..~p + 6"a.6vp - 6.a.6"p), 

s"vab,sa.pah = 2( -E,lVa.p + 6p~6vp - 6v~6pp). 
Further, 

S,,~ahS~vcd = t(EacS"eb8vde + EddS"ebSvec 

(All) 

(A 12) 

(A13) 

(A14) 

(AlS) 

(A16) 

+ EoeS" BaS.de + EbdS/ aSvc.), (AlS) 

ab- 1( a b + a b spa. Sa..cd = -2" Sp cS. d s,. dS• c 

+ s/os.ad + s,.a as.a;,), 

S". abS,.. cd = 4( EacEbd + eadEbC), 

(A19) 

(A20) 

(A21) 
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The de ~itter syml!letric fields, sat!sfying the field. equations (~fL.P. + KYfL)'P = PfL'P, are quantized in the 
Tung-Wemberg basIs. The properties of the associated Green s and causal functions are studied. Trans
formations of the Hilbert space under CPT and inhomogeneous Lorentz transformations are given. A 
simple closed expression is obtained for the Shaw-Weinberg matrix tensor tal·· . a2,. 

mlm2 

1. INTRODUCTION 

In the present paper we quantize the free de Sitter 
symmetric fields studied before,1.2 which are the 
solutions of the field equations 

We follow the quantization scheme proposed by 
Tung3 and studied extensively recently by Weinberg,4 
in which the Hilbert space is constructed from the 
linearly independent states corresponding to the 
"physical" spin multiplicity. This means that, for each 
representation Ra(Jl.l' A2) of the homogeneous de 
Sitter group, we introduce 2(2A2 + I) creation oper
ators for particles and antiparticles. We study the 
quantized field in two bases: 

(i) The observable spin basis, which was studied 
for more general fields by Pursey 6; 

(ii) The helicity basis, which was studied for general 
fields by Tung3 and Weinberg.4 

We define the associated Green's and causal func
tions and study their properties. Inhomogeneous 
Lorentz and CPT transformations of the Hilbert space 
are derived. 

Although our equations are not derived from a 
Lagrangian and are not even equivalent to a single 
equation, all results obtained bear close similarity to 
the schemes following from Schwinger's action prin
ciple or from one matrix equation, as in the Ume
zawa-Visconti-Takabashi formalism. 6 

In Appendix A we prove the independence of the 
Lorentz-invariant scalar product of the hypersurface 
on which it is defined. In Appendix B we obtain a very 
simple closed expression for t-matrix tensor introduced 
by Weinberg7.4 and Shaw.8 We use in this derivation a 
relation obtained in Paper IP by a direct solution of 
the wave equations. This shows the power of wave 
equations in studying the free fields, since these equa
tions serve as identities among the field components. 

We have carried out the quantization in terms of the 
compact matrix form "P of the field. These results can 
be rewritten in multispinor forms, using the connec
tions between multispinors and the components 
of "P given in Ref. 9. This helps us to compare our 
formalism with thQse of Guralnik and Kibblelo and 
Chang.H Also, one can relate our quantization of "P to 
Chang'S quantizationl2 of the PauIi-Fierz and Rarita
Schwinger fields. This can easily be done using the 
connections between 5-tensors and spin tensors and 
the components of"P established in Paper n.2 

2. QUANTIZATION IN WEINBERG'S BASIS 

A. Plane-wave Solutions 

For the finite-dimensional irreducible representa
tions Ra(Al' A2) of the de Sitter group 0(4, I), the 
field equations l 

(SfL.O• + iKYfL)'f/J = OfL'f/J (2.1) 

possess 2(2A2 + I) linearly independent solutions of 
the form 

"PM(X; P, E) 

= (27T)-~ exp [i(r· P - EEpf)]WM(p,po). (2.2) 

Here Po = EEl" E = ±I, and Ep = (p2 + K2)!. Mis 
the eigenvalue of the helicity operator 

where E = Ala is the "mathematical" spin operator 
and P = (p2)!, or is of the third component of the 
observable spin S: 

The observable spin is defined in terms of the Pauli
Lubanski pseudovector WI' = tAIEfL.apSaPP. as [cf, 
(I.4.25)] 

It satisfies the relation 

2027 
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The observable spin is A,2, and its component M takes 
the values -A,2' -A,2 + 1,' .. ,A,2' 

W M(P, Po) is related to the rest system wavefunction 
cpM(E) as follows: 

WM(P,PO) = R(p, E)rpM(E). (2.6) 

R(p, E) is the Lorentz boost which takes the momen
tum (0, 0, 0, EK) into (p, Po)' It is given by 

R(p, E) = exp (A,101«' pip), (2.7) 

where 
(2.8) 

R(p, E) = V-l(p, E), where V(p, E) is the Chakrabarti 
transformation [cf. (1.5.1)]. The observable spin is 
related to the "mathematical spin" 1: as follows: 

(2.9) 

The state of definite observable spin is characterized by 

(2.10) 

On the other hand, the helicity states are characterized 
by 

1:. PcpM = MpcpM, 

since [1: . p, R] = 0. 
Normalizing cp M such that 

cptcpM' = CJMlIl" 

we then normalize "PM(X, p, E) as follows: 

("PM(X, p, E), "PM.(X, p', E'» 

(2.11) 

(2.12) 

= c.(EvIK)CJMM,CJ .. ,{)3(p - p'), (2.13) 

where 

c. = E{J. = 1, for fermions, A,2 half-integral, 

= E, for bosons, A,2 integral. (2.14) 

The Lorentz-invariant scalar product of two functions 
"PI and "P2 is defined as 

("PI' "P2) = f "PlY,,"P2 d(1", (2.15) 

where the integration is carried over a spacelike hyper
surface (1. Relation (2.13) was proved in Part I for a 
flat surface t = const, such that 

("PI' "P2) = I ipIYO"P2d3X. (2.16) 

In Appendix A we prove that the scalar product (2.15) 
is independent of the choice of the hypersurface (1. 

This proves the Lorentz covariance of (2.13). It proves 
also that the Lorentz-covariant expectation value of a 

dynamical variable A is given by 

(A) = U("P, A"P) + (A"P, "P)] 

= i I(ipYoA"P + A"PYo"P)d
3
x. 

In particular, the total charge is 

Q = e f ipYo"Pd3X, 

and the total momentum 

(2.17) 

(2.18) 

(2.19) 

fi/l = -is/lvav + mY/l is the single-particle energy
momentum operator. The second line in (2.19) follows 
from the field equations (2.1). Expressions (2.18) and 
(2.19) (the second line) can be derived from a varia
tional principle for the Lagrangian 

!.: = -iipY/la/l"P + Kip"P. 

B. Quantization 

The solutions of the free field equations (2.1) do not 
span the carrier space of the representation RS(A,I , A,2) 
except in the case of Dirac's theory (A,l = A,2 = t). In 
fact, the carrier space decomposes under the proper 
Lorentz group as follows: 

"P = I ttl "P(Sl' S2), (2.20) 

where "P(Sl' S2) transforms according to D(sI' S2) and 
the summation extends over all 

(2.21) 

Each inequivalent representation D(sI' S2) occurs only 
once. For the solutions of the field equations (2.1), 
each component "P(Sl, S2) is the carrier of an irreduc
ible representation of the Poincare group with spin A,2 
and mass K; it satisfies 

(P/lP/l + K2)"P(SI' S2) = 0, 

W/lW/l"P(Sl, S2) = K2A2(A,2 + l)"P(sl' S2)' (2.22) 

All Poincare components "P(SI' S2) of "P are related 
uniquely to one independent component "P(A2, 0) for 
each energy sign by means of the field equations. 
"P(A,2' 0) is Wigner's unitary representation of the 
Poincare group. The connection between "P(SI , S2) and 

. "P(A2 ,0) is derived in Paper II in matrix form [cf. 
(11.2.5)]. "P(A2, 0) is determined up to an arbitrary 
normalization constant by spin or helicity assignments. 

Recently, Weinberg4 quantized the Poincare com
ponents "P(Sl, S2) corresponding to a definite mass K 
and definite spin S = .12 for states with definite helicity, 
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by introducing a Hilbert space based on the physical 
multiplicity 2(21.2 + 1) of the states described by the 
component '1/'(51, 52)' He did not make use of field 
equations to evaluate "1'(51, 52)' Our Poincare com
ponents are proportional to Weinberg's components; 
the proportionality coefficients are determined from 
the field equations. In fact, these coefficients follow 
from the 0(4,1) symmetry. We adopt here Weinberg's 
quantization scheme. We carry out the quantization in 
a unified way, both for helicity and observable spin 
states. The new features in our approach are the exist
ence of field energy-momentum and charge operators 
and the existence of a uniquely defined adjoint wave
function ip. 

We introduce annihilation and creation operators 
a"lf(p) , aj{(p), and b,'1f(P), bj{(p) for particles and 
antiparticles, respectively, with definite momentum p 
and definite helicity or spin component S3 = M. 
They satisfy the usual statistics relations: 

[a M(P), a!{.(p/)]± = [b M(P), bju,(p/)]± 

= ~ 111 M,<5\P - p'). (2.23) 

All other commutators or anticommutators vanish. 
Commutators are used for bosons with Al and 1.2 both 
integral; anticommutators are used for fermions with 
Al and A2 ·both half-integral. The quantized fields are 
given by 

f (K)t A. 
VJ(X) = d

3
p Ep M~}aM(p)VJM(X; p, +) 

+ b~M( -P)VJM(X; p, - )], 

f ( )t A. 

ip(x) = d
3
p ;p M~A2[at(p)ipM(X; p, +) 

+ balli -P)ipM(X; p, - )]. (2.24) 

VJM(X; p, ±) are the positive- and negative-energy 
plane-wave solutions (2.2). CIM = M or -M, accord
ing to whether M stands for the eigenvalues of the 
observable spin S3 or the helicity :E. pip, respectively. 
We note that, as p,. -+ -p,., S -+ S. Thus S is defined 
by (2.5) for € = + I; explicitly, 

S = (1.1/K)[EpO" + ia. A p - (Ep + K)-l(O". p)p]. 

(2.25) 

We have used the notation (2.24) to facilitate the 
calculations in what follows. 

Ifwe normalize VJM(X; p, E) according to (2.13), the 
total charge operator (2.18) becomes 

The occurrence of c_, defined by (2.14), is a mani
festation of the well-known spin-statistics theorem; 
it is given by 

c = (_1)2A2 = +1, for fermions, 

= -1, for bosons. (2.27) 

Eliminating the vacuum expectation value (01 Q 10), 
using (2.23), we get 

Q - (01 Q 10) 

= e f d3pM~A2[at(p)a M(P) - b!tCp)b M(P)]· (2.28) 

The helicity operator is given by 

(:E. pip) 

= f d3pM~AIM[a1tCP)aJJ(p) - cb_M(p)b:::.lJ(p)] 

= f d3pM~A2M[a1J(p)aJiP) + b!tCp)bM(p)]· 

(2.29) 

If M labels the eigenvalue of S3 instead of the helicity, 
then 

(S3) = f d3pM~A2M[a!tCP)aM(p) + cbJJ(p)bllip)] 

= f d3pM~A2M[a1tCP)a.11(p) + b!tCp)b"tCp)]· 

(2.30) 

Similarly, using (2.19), we find the total momentum 
operator to be 

P = f d3
p M~A.p[atcP)aM(p) + b!tCp)bM(p)], (2.31) 

and the Hamiltonian H = Po is given by 

H - (01 H 10) 

= I d3pEpM~}a!tCP)aM(p) + b!tCp)bM(p)]· 

(2.32) 

The Hamiltonian is semi-positive-definite. Expressions 
(2.28)-(2.32) show that at(p) and b!I(P) are creation 
operators of particles and antiparticles, respectively, 
of definite momentum p and spin or helicity M. For 
neutral particles we take a1lf(p) = bM(p) = cM(p)/J2, 
where c M(P) is the annihilation operator of the neutral 
particle. 

In general, using the previous relations, we obtain 
Heisenberg's equations 

O,.VJ(X) = i[VJ(x), P,.l, 
o,.ip(x) = ;[ip(x), P,.l, (2.33) 
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and 

Also 

[1p(x) , Q] = e1p(x), 

[Vi(x), Q] = -eVi(x). 

[PIl , Pv] = [Q, PIl ] 

= [(E. pip), P Il ] = [(E. pjp) , Q] 

(2.34) 

= [(Sa), P,,] = [(Sa), Q] = O. (2.35) 

We note, however, that (Sa) and (E. pjp) do not 
commute with each other, since in their definitions 
(2.29) and (2.30) different a's and b's are used. 

3. GREEN'S FUNCTIONS 

A. States with Definite Spin 

The field equations (2.1) are a special case of those 
constructed by Pursey5 for wavefunctions describing 
states of definite mass K and definite spin s = A,2' 
which are the direct sum of several Poincare compo
nents. Actually, Pursey starts from the relation (2.6) 
between the wavefunction rpM in the canonical basis 
and w(p, Po). Then he derives the equations which 
express the supplementary conditions required to make 
the spin unique s = ,12' Due to the de Sitter symmetry 
of our fields, the components of rpM are all given, 
except for a normalization constant which we now 
fix by the condition (2.l3). 

The components of w M(P, Po) were evaluated in 
Paper I [cf. (1.5.23)]. In Le Couteur's representation, 
they are given by 

WM(P,PO I Sls2sm) 
= €281a(sls2) (Sls2sml R(p, €) IS1S2A,2M). (3.1) 

Here WM is the eigenvalue of observable spin SaWM = 
Mw M' The coupling coefficients a(sls2) are given by 
[cf. Eq. (1.5.63)] 

a(sls2) = Z-1'818.[(2S1 + 1)(2s2 + 1)( 2,11 + 2 ) 
Al - Sl - S2 

X ( 2,11 + 2 )J! (3.2a) 
Al - Sl + S2 + 1 

Here 

'Slsa = 1, for Sl ~ S2, 
= ( -1 l'al, for Sl < S2, (3.2b) 

where [,12] is the integral part of ,12 and Z is a normal
ization constant given by 

Z2 = [22.\1(2,11 + 2)! (AI - ,12 + I)! (AI + ,12 + 2)!] 

X [2(.11 - ,12 + 1)(,11 + .12 + 2)2 

X F(-A1 - ,12' 1; Al - ,12 + 1; -1) 
- (AI + 1)(2.11 + 1)(.11 + .12 + 3) 

X F(-A1 - ,12 - 1,1; Al - .12 + 2; -1)]. 
(3.2c) 

F(a, b; c; x) is a hypergeometric series. 
Further, recalling that YOrpM(e) = erpM(e), we get 

WM(P, Po) = ;PMB-1 = fJ.rpiwB-1(p, e), (3.3) 

where fJ. = I and € for bosons and fermions, respec
tively. Thus the components of WM are 

WM(P, Po I Sls2sm) 

= fJ.€281a(Sls2) (SlS2A,2MI R-l(p, €) IS1s2sm). (3.4) 

The components of W M in Bhabha's direct-product 
representation, 0(4) ~ 0(3) X 0(3), are related to 
those in Le Couteur's representation by the usual 
Clebsch-Gordan decomposition: 

Wll1(Sls2sm) = ~ C(SlS2 S, m1m2m)wM(slm1 , S2 m2), 

WM(Sl m1, S2 m2) = L C(SlS2S, m1m2m)wM(sls2sm). 
• 

(3.5) 
Recalling that 

E = E(l) + E(2), 

A,l CX = E(l) - E(2), (3.6) 

where E(1) and E(2) are the infinitesimal generators of 
the two rotation subgroups of 0(4) ~ 0(3) X 0(3), 
the boost is written as 

R(p, €) = Vl)(p, €) X V2)( -p, E), (3.7) 

where 
Vi)(p, €) = exp (OlE(i) • pjp). (3.8) 

01 is given by (2.8). L(p, €) and L( -p, €) are the 
boosts in the representation D(sl' 0) and D(O, S2), 
respectively. 

The matrix elements of R(p, €) is Bhabha's, and Le 
Couteur's representations are related as follows: 

(SlS2sml B(p, €) ISlS2A2M) 

= L ~ C(SlS2S, m1m2m)c(sls2A2, f-l1f-l2M) 

X (sImI' S2m21 B(p, €) IS1f-l1' S2f-l2) 

= ~ L C(SlS2S, m1m2m)C(SIS2A2' f-l1f-l2M) 

X L~II11(P, €)L~2/l/ -p, E), (3.9) 

(SlS2A2Mj B-\p, €) jS1s2sm) 

= L L c(sls2A2, f-llf-l2M)c(SlS2S, m 1m 2m) 

Hence 

W M(P, Po I sImI' S2m2) 

= €2"'a(SlS2) L C(SlS2A2' f-l1f-l2M) 
Ill'" 
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and 

W M(P, Po I SI ml , S2m2) 

= E2S1fJ.a(SIS2) ~ C(SIS2A2' fllfl2M) 

x L~~ml( -p, E)L~~m2(P' E). (3.12) 

Denoting the positive- and negative-energy solu
tions with definite observable spin by 

UM(p) = WM(P, E1')' 

V M(P) = WlIi( -p, -E1')' 

and noting that 

we find that 

B(p, E1') = B( -p, -E1')' 

S(p, E1') = S( -p, -E1')' 

(3.13) 

(3.14) 

(3.15) 

SsUM(p) = MUM(p) , S3VM(P) = MVM(p), 
(3.16) 

and 

vlItCP; sImI' S2m2) = ( _1)2S1 U M(P; sImI' S2m2), 

(3.17) 

VM(p; sImI' S2m2) = fJ-( -1 )2s1 UM(p; sImI' S2m2), 

(3.18) 

(3.19) 

(3.20) 

Here fJ- = (_1)2.<2 = 1 and -1 for bosons and 
fermions, respectively. F-l and F are mixed matrix 
elements of the boosts B(p, E1') and B-l(p, E1')' 
respectively, between Bhabha's and Le Couteur's 
bases: 

F;;.rl~l:i\:2\p) = (sImI' S2m21 B ISlS2A2M) 

= ~ C(SIS2A2' fllfl2M)L;'11l.(P)V;"21l/ - p), 
111112 

(3.21) 

F~~~~~(p) = (SIS2A2MI B-1 ISlml' S2m2) 

= 1 C(SIS2A2' fllfl2M)L~~ml( -p)L~~m2(P)' 
111M 

(3.22) 

The coefficients F and F-l were introduced by Pursey.5 
There is a minor difference of notation; what we call 
here L(p), he calls L-l(p) and L( -p). However, ex
pressions (3.21) and (3.22) are identical to his. Pursey 
studied the properties of the F-coefficients. He proved 
the following useful identity: 

= (2A2 + 1) ~ (_1)'1+82'+o+.'.2 
smm' 

( 
(2s + 1)3 )!{S~ S~ A2} 

X (2s1 + 1)(2s2 + 1) S2 SI S 

X C(SS~SI' mm{ml)c(ss~S2' m'm~m2) 

(3.23) 

where {SI'S2 A2} is a 6-j symbol and P<SS),(p, E1') is the 
mass-sheiiTpo = E1' = (p2 + K2)!] vai't7e of the stand
ard traceless symmetric tensor P~~' constructed from 
the 4-vector PIl , which transforms irreducibly under 
the Lorentz group according to D(s, s). McKerreP3 
has shown that 

p~~,(p, E1') = K2SF;'~~~O)(p) 

= ~ c(sso, fl -fl 0) (sm, sm'l D ISfl, S -fl) 
II 

x (E1' + p)"-Il(E1' _ p)HIl 

= K2s 1 (-1)S-Il(2s + 1)-! D!"i rp, 0, y) 
II 

(
E + P)-21l 

x D!"',-Il(rp, 0, y) ~ (3.24) 

D is the rotation D(rp, 0, y) defined in Sec. 4A which 
takes the momentum (0,0, p) to p. In the last line of 
(3.24) we have made use of the relation 

B. Off-the-Mass-Shell Relations 

The off-the-mass-shell tensor is given by 

p~~, = (2s + 1)-! 1 (_1)S-1l D!,.I1( rp, 0, y) 
/l 

x D!"',-irp, 0, y)(po + p)"-/l(po - p)S+/l 

= (2s + 1)-ie-i(m+m')q> ~(-l)"-/ld:"/l(O)d!,.,,_ie) 
/l 

(3.25) 

where (0, rp) are the polar angles of the momentum 
vector 

PI = P sin e cos rp, P2 = P sin e sin rp, 

Pa = P cos e 
and d:,.,.,<O) = (sml e-i8l:2 Isfl) is the usual rotation 
matrix. We note that p~~, is independent of Euler's 
angle y, which is an arbitrary rotation about the 
direction of p. 

To compare with Weinberg's4 notation, we note that 
his tensor n~~,(p) is related to p~~, as follows: 

n~~,(p) = (_l)s-m'(2s + l)!P~:~m' 
= K

2s (sml exp (-201E . p/p) Ism') 

= ( _1)28t~';'; '1'2'P/l
1 

••• PI' •• ' (3.26) 
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The n~~,(p) are the off-the-mass-shell matrix elements 
of [L( _p)]2 in the representation D(s) of the 3-dimen
sional rotation group, and t is a traceless symmetric 
constant tensor defined by Weinberg7 and Shaw.s In 
Appendix B we evaluate this tensor using a simple 
relation obtained in Paper II. 

Using the symmetry properties of the Clebsch
Gordan coefficients,14 we easily verify that the ex
pression (3.23) is related to Weinberg's4 analogous 
expression as follows: 

'" F-lC,,8ZAZ)(p)F("'S2 A2) (p) 
k mlm2M mt'mt'M 
M 

= (_1)·"-82'-m"-mZ'7T(8"8~,,"8~) (pjK' A) (3.27) 
-ml -rot ,mimI ,2 , 

where 

7T(,,:S2',!,S2) (pj(_p p )t. J') 
ml mt ,mimi Jl II ' 

= (2s + 1) ! W(S{S~SIS2; js)( _1)','-82-1+V
"( _ pppp)-S 

8V'V" 

X C(SiSlS, mimlV')C(S~S2S, m~m2v")n~~~_v"(p), (3.28) 

Here W(S~S~SISI;jS) is a Racah coefficient. 
The off-the-mass-shell expression for the relation 

(3.23) is obtained by substituting p~~,(p, E1J) by its 
off-the-mass-shell expression (3.25). We denote the 
resulting expression by (sImI' S2m21 G(p) Is~m~, s~m~) 
and consider it as a matrix element of a matrix G(p). 
It is related to the off-the-mass-shell expression of 
Weinberg in the following way: 

Its mass-shell value is (3.27). Weinberg4 has shown that 

N(S>;S2'.,s1 S2) (p' J' K) 
ml mt ,mlm2 ' , 

= (2j + 1)! W(S{S~SIS2;jS)( _l)si'-sz-i+v"K-28 
8V'V" 

where 

F N'(X, S~S~SlS2) 

= (_1)i'-i(2j + 1)! (2s + l)x' 
• 

X W(S{S~SIS2;jS)W(S{S~SIS2;j'S). (3.31) 

As we shall see, N defines the Green's function. The 
different matrix elements correspond to all Al ~ 
51 + S2 ~j' ~ lSI - S21 ~ b, where b = 0 and l for 
bosons and fermions, respectively. Thus, in the ex
pansions (3.30), various spins j' contribute with 
b ~j' ~ A.l • 

C. The Green's Function 

The quantized field (2.24) can be written in the form 

1p(x) = (27T)-i f (;J! d3p ~ [aM(p)U M(p)ei1J'" 

+ bju.(p)VM(p)e-i1J"'], 

'Ijj(x) = (2rr)-if(E:td3P"t[bM(P)VM(p)ei1J'" 

+ aju.(p)U M(p)e-i1J"'], (3.32) 

where px = p. r - E1Jt and the U and V are defined 
by (3.13). Using (3.17)-(3.20) and denoting the com
ponents of 1p(x) in the Bhabha representation by 
"P:.!:~2(X), in accordance with Weinberg's notation, we 
get 

t 
"P~~:n2(X) = (2rr)-ia(Sls2) f (E:) d

3
p ~ F;;'~<:"':1:2)(p) 

X [a M(p)ei1J'" + (_1)2S1bju.(p)e-i1J"'], 
! 

'Ijj~::nz<x) = (27Tria(SIS2)J (E:) d
3
p "t F~~~;~(p) 

X [atip)e-i1J'" + (_1)2AZ-2S1b M(p)ei1J"']. 

(3.33) 

Using the commutation relations (2.23), we get 

["P:.!::n/x), "P:.!~~~2'(Y)]± = ['Ijj:.!::n.(x), 'Ijj:.!;~~ .. (y)]± = O. 
(3.34) 

Also, 

Now, using the symmetry property 

we get 

["P~~~.(x), 'Ijj~;~~ .. (y)]± 

Here 

= 2jKa(sls2)a(s{s~) 

X (simi, S2m21 G( - io) Is{m{, s~m~> ~(x - y) . 

(3.36) 

~(x) = -i(2rr)-3f.d4P€(Po)b(ppPp + K2)ei1J"', (3.37) 

and G( -io) implies the substitution p" = -iojox" in 
the off-the-mass-shell matrix (3.29). The Wightman 
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two-point functions are 

( V'~:~2(X}tji~~~::'I'(Y»O 
= (V'~!:'::2(X )ij/';;!,s;;:,z-(y »0 

= 2iKa(SIS2)a(S~S~) 

X (SImI' S2m21 G( - io) Is~m{, s~m~) A+(x - y), 
(3.38) 

( 1jjSl'BZ' ,(y)lIJS182 (x» 
rml /m2 Tmlm~ 0 

_ (1jj(+lsl'SI'(y)1IJ(-l8182(X» 
- rmt'm2' Tmlm2; 0 

= (-1)2).12iKa(sIs2)a(s~s~) 

X (sImI' S2m21 G(-io) Is{m{, s~m~)A_(x - y). 

(3.39) 

Here V'{+) and V'H are the positive- and negative
frequency parts of 11', and 

A (x) = A~(x) = -- -- e'1'''. -i f d3
p . 

+ 2(217)3 E1' 
The Green's function 

(T {V':.!:~2(X)V;:.!;~::'2'(Y)})0 
- (O(x - Y )1IJ(+l8182(X)1jj{-l'1'S2'(y) - 0 0 rmlm. rml'm.' 

+ (-1)2).20(yo - xo)V;~!";;:~'(y)V'<';;::'::2(X»O 
= 2iKa(sIs2)a(s~s~)[O(xo - Yo) 

x (sImI' S2m21 G( - ;0) I S~ m~ , s~m~) 
X A+(x - y) - O(Yo - xo) 

x (sImI' S2m21 G( - iO) Is~m~, s~m~) A_(x - y)]. 

(3.40) 

For convenience, we introduce the matrices 
S(il(X - y) with matrix elements 

S~~{x - y) = dpp{-io)Aix - y) (3.41) 

in any representation. The index i specifies the type of 
Ai(X) involved; for example, in the Bhabha repre-

in (3.44), as suggested by Weinberg." We get 

(T*{ V'p(x)Vip'(Y)}) = is;p'(x - y), (3.45) 

where SC(x - y) is the causal Green's function ob
tained by using 

Ac(x) = O(x)A+(x) - O( -x)A_(x) 

in (3.41). The covariant propagator in momentum 
space is 

App,(p) = if d"xe-i1'(lJ:-l/ls;p'(X - y) 

_ dpp'(p) 

- (pppp + K2 - ie) . 
(3.46) 

However, the definition of the causal Green's function 
is not unique and is very much dependent on the type 
of interaction. As is well known,8 all functions of the 
form 

G'(-iO) = G(-iO) + g(-io)(O - K2), 

with arbitrary g( -io), lead to the same relation (3.40), 
but they lead to different causal Green's functions. 

4. HELICITY STATES 

A. The Rotation Matrix 

We prove in what follows that, if V'M is the solution 
of the field equations with definite heIicity for an 
arbitrary direction of the momentum and V'~ is the 
corresponding state if the momentum is parallel to the 
z axis, then V'M = DV'~, where D is the rotation 
matrix taking the momentum (O,O,p) into p. We 
restrict ourselves to the momentum space. 

In general, V'M satisfies the following equations: 

PkV'M = hV'M, (4.1) 

sentation, p = (SImI> S2m2) and where 

HV'M = POV'M, 

S1pM = MV'M' 

(4.2) 

(4.3) 

(SImI' S2m21 d( - io) Is{m{, s~m~) 

= 2Ka(sls2)a(s~s~) 

x (sImI' S2m21 G( -io) Is{m{, s~m~). (3.42) 

Then, we write, in general, 

[V'p(x), V'p,(y)J± = [Vip(x), V;p{y)]± = 0, 

[V'ix), 7pp{y)]± = iSpp'(x - y), (3.43) 

(T {1pp(x)V;p,(Y) }>o 
= i[O(xo - Yo)S~~!(x - y) - O(Yo - xo)S~-;!(x - y)]. 

(3.44) 

The time-ordered product is not, in general, Lorentz 
covariant. A Lorentz-covariant time-ordered product 
is obtained by interchanging e(± (xo - Yo» and d( - iO) 

p = a.po + ia A p + Ky 

is the field momentum operator, 

H = a.. p + Kyo 

is the Hamiltonian, and 

S = 'E.·plp 
is the helicity. 

(4.4) 

(4.5) 

(4.6) 

On the other hand, if the momentum is in the z 
direction, PI = P2 = 0, P3 = P, then 1p~ satisfies the 
equations 

P~1p~ = P~1p~ = 0, 

P~1p~ = P1p'1, (4.7) 

H°1p~ = PoV'~, (4.8) 

S°1p'1 = ~31p~ = MV'~, (4.9) 
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where 

P~ = CXIPO + iC12P + KYI' 

Pg = CX2PO - ialP + KY2, 

P~ = CX3PO + KY3, 

HO = OCaP + KYo, 

SO = La. 

(4.10) 

(4.11) 

(4.12) 

We now consider an arbitrary 3-dimensional rota
tion 

Xk = aklx~, 

akiali = aikaU = bkl · (4.13) 

The corresponding rotation matrix D of the space 
carrying the representation R5(AI' .1.2) is determined 
from the relations 

and 

D-ILkD = aklLI , 

D-IOCkD = aklcxl , 

D-IYkD = aklYI' 

Dyo = YoD. 

(4.14) 

(4.15) 

Due to the orthogonality of the transformation (4.13), 
(a-I)kl = (aT)kl = alk,and the group property 

D(a-I) = D(aT) = D-I(a), 

the inverse relations hold: 

Now, if 

DLkD-I = a'kLI' 

DOCkD- I = alkcx" 

DYkD- I = alkYl' 

(4.16) 

(4.17) 

Thus 

S'fP.li = SL3D-
I
'fPM = DL3'fP~i = M'fPM' (4.23) 

This completes the proof that 'fP M = D1p~l is a solution 
of the field equations with definite helicity. 

Since D is a 3-dimensional rotation, it can be written 
in the usual form 

(4.24) 

where cp, e, and yare Euler angles which are deter
mined in terms of akl . From (4.15), (4.19), and (4.22) 
and the definitions of Hand HO, it is required that 

DocaD-I = ex· p/p, 

DL3D-I = ~ . p/p. 

(4.25) 

(4.26) 

Using the commutation relations (1.2.11), both re
quirements lead to 

PI = p sin e cos cp, 

P2 = P sin e sin cp, 

Pa = P cos e, 
(4.27) 

while Y remains arbitrary. The two Euler angles e and 
cp are just the polar angles of the momentum vector 
p. Any choice of Y determines the rest of akl in such a 
way that Eqs. (4.18) and, hence, also Eqs. (4.1) are 
automatically satisfied. Applying (4.24) to a helicity 
state, we get 

'fPM = D'fP~i 
= e-iMY(e-icpI:3e-iOI:0'fP1w). (4.28) 

where p~ = (0, O,p), then [cf. Eq. (1.2.56)] 
The arbitrariness of y results in a phase factor e-iMy , 

which can be absorbed in the definition of 'fP M' It is 
(4.18) of no physical consequence. In fact, y is a rotation 

about the direction p, which is irrelevant for our 
(4.19) 

Thus, if 
(4.20) 

where 'fPlt satisfies Eqs. (4.7) and (4.8), then 'fPM will 
satisfy Eqs. (4.1) and (4.2). 

We note, however, that (4.17) and (4.13) do not 
determine akl completely. In fact, using p~ = pg = ° 
and pg = p, we get 

(4.21) 

This determines only two of the three parameters of 
0(3). However, (4.21) suffices to ensure that (4.20) is a 
state of definite helicity. Using (4.16) and (4.21), we 
get 

(4.22) 

purpose. 
B. The Helicity States 

If the momentum is in the z direction, the helicity 
and the z component of the. observable spin coincide: 

(4.29) 

where L~ll and L~2) are defined by (3.6). Noting that 
m1 and m2 are the eigenvalues of ~~l) and ~~2), 

respectively, in the Bhabha representation, we see that 
the matrix elements of the boosts (3.8) reduce, for 

Pi = P2 = ° and P3 = P, to 

L~lI"(P, e) = (jmllllem191 = (jml!l1(E p + eP/K)m" 

L~'Il'(-p, e) = (jm.1l2(Ep + ep/K)-m.. (4.30) 
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WM and wM' given by (3.11) and (3.12), reduce to 

wt- (E I sImI' S2m2) 
= E28la(SIS2)(Ep + p/K)'(ml-m2)C(SIS2A2, mlm2M ), 

(4.31) 

W~li( E I sImI' S2m2) 
= (3.E28la(SIS2)(Ep - p/ K)'(ml-ma)C(SIS2A2, mlm2M). 

(4.32) 

Relation (4.31) was obtained in Part II [Eq. (II.2.19)] 
except for an over-all proportionality factor which is 
fixed here by the normalization condition (2.13). 

In Le Couteur's representation 

W~'J1(E I Sls2sm) 

= 0mME28la(sls2) L C(SIS2S, mlm2M) 

(
E + p)E(ml-m2) 

X C(SIS2A2' mlm2M) ~ _ ' (4.33) 

W~iE I Sls2sm) 

= 0mM(3EE28la(sls2) .L C(SIS2S, mlm2M) 

(
E _ p)dml-m2) 

X C(SIS2A2' mlm2M) ~ . (4.34) 

Although helicity and the observable spin component 
Sa coincide in the frame pO = (0,0, p), they differ 
in any arbitrary frame p. The state W M of definite spin 
Sa and that of definite helicity, which we denote by 
XM(P, Po), do not coincide. From the preceding section 
we have 

the Bhabha representation, we get 

XM(E I sImI' S2m2) 
= e-iMr-i(ml+m2)<PE2S1a(SIS2) 

(
E + P)'(I'l-I'a) 

X .L d':n11'Je)d';..I'.(e) -p--
I'll'. K 

x C(SIS2A2,Plf-l2M), (4.39) 

XM(E I sImI' S2m2) 

Denoting 

= ei1l1r+i(ml+m2)<p(3.E2S1a(SIS2) 

(
E - P)«I'l-I'a) 

X ~ d:n ll'1(e)d!n.I'2(e) -p--
I'll'. K 

X c(sIS2A2' f-llf-l2M). (4.40) 

UM(P) = XM(P, Ep), 

V1li(P) = X-M(-P, -Ep), (4.41) 

we read the quantized field (2.24) as 

VJ(x) = (217)-f I dap(E:)~ ~ [aM(p)UM(p)eip", 

+ b!t(P)vM(p)e-iP"'], (4.42) 

ip(x) = (2n)-!Id3p(.5...)~ ~ [bM(p)vM(p)eip", 
Ep M 

+ a!t(p)uM(p)e-iP"']. (4.43) 

Noting that, as P ~ -p, !P ~ 17 + !p, e ~ 17 - e, 
y ~ y, and using the relations 

C(SIS2S, -f-ll -f-l2 - M) = (-1)'1+s2-8C(SIS2S, f-llf-l2M), 

From the unitarity of D: D+ = D-I we get 

(4.35) D!n.-il7 + !P, 17 - e, y) = e2il'r+i1T8D':,.I'(!p, e, y), 

we obtain 

XM(P, Po) = W~l(E)D+(!p, e, y). (4.36) VM(P; sImI, S2m2) 
Thus 

XM(P, Po I Sls2sm) 

= D!nM(!P, e, Y)W~(E I SIS2SM) 
= e-iMr-im<Pd!nM(e)E2Sla(sls2) 

X .L C(SIS2S, mlm2M) 

(
E + p)dml-m2) 

X C(SIS2A2' ml m2M) ~ , 

XM(P, Po I Sls2sm) 

= W~(E I SIS2SM)D:n."'1(!P, e, y)* 

= eiMr+im<Pd!nM(e)(3,E28la(sls2) 

X .L C(SIS2S, m1m2M) 
mImI 

(4.37) 

(
E _ p).(m1-m l ) 

X C(SIS2A2, mlm2M) ~ . (4.38) 

Using (3.6), we write D = DU) D(2), where D(i) is 
defined in terms of the corresponding ~~). Then, in 

= (_1)2S1ei1TA.+2iMrUM(p; sImI' S2m2), (4.44) 

VM(P; sImI, S2m2) 

= ( -1 )2S1ei1T A.-2iMru M(P ; sImI' S2m2), (4.45) 

U M(P; sImI' S2m2) 
= e-iMr-i(ml+m2)<Pa(SIS2) 

X C(SIS2A2' f-llf-l2M) 

_ '" 81 82 (Ep + P)I'l-I" - a(SIS2) 4 Dm1 I'1 Dm.I" ---
I'll'. K 

X C(SIS2A2, f-llf-l2M), (4.46) 

UM(p; SImI' S2m2) 
= eiMr+i(ml+ffl2)<Pa(SIS2) 

X I d~1I,r<e)d~21'2(e)(Ep - p'(l-I" 
I'll" K , 

X C(SIS2A2, f-llf-l2M). (4.47) 
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Further, using the symmetry property 

d~m _,.«() = (_l)lI-md:",.«(), 
we get 

U_M(P; SI -mI' S2 -m2) 
= (_1)"1+8z-ml-m2+Az-MUM(P; sImI' S2m2)' (4.48) 

To compare with Weinberg's4 expressions for UM and 
v M, which can be obtained by group-theoretical con
siderations, we choose Y = !7T. Then 

tp!!~:..a<x) = (27T)-t J (;Jt 
d3p ~ UM(P; sImI, S2m2) 

X [aM(p)ei 2>'" + (_1)28Z+A2-Mb!t(p)e-i 2>"'], 

t (4.49) 

tii!!::...(x) = (27T)-t J (;J d3
p ~ UM(P; sImI' S2m2) 

and 

fl!!:"21 -mix) 

X [a!t(p)e-i 2>'" + (_1)2'1+A.-Mb M(p)ei21",] , 

(4.50) 

= (-lYl-82-m1-mzJ (~)t d3p ~ UM(P; sImI' S2m2) 

X [b_M(p)ei 2>'" + (_1)2'z+A2-Ma!M(p)e-i 2>"']. (4.51) 

Expressions (4.49) and (4.51) are the same as Wein
berg's expressions for tp!!~:"2(X) and (_1)S2-s1+m l+m• X 

'Iji!!~:".(x), which explains the signs and the factors in 
relation (3.29). There are two differences of conven
tion between Weinberg's expressions and ours. The 
first is that instead of bM(p) he uses b_M(p) , which 
means that he defines the helicity of the antiparticle 
opposite to the direction of its momentum. The second 
difference is that in his corresponding expression for 
UM(P), a factor [(E2> - p)/K]m1-ms enters in place of the 
factor [(E2> + p)/K]m1-m2 in our expression (4.46). This 
is due to Weinberg's use of the boost as L( --:p), while 
we use L(p). Actually, this means that his definition of 
the particle amounts to our definition of the anti
particle. If we define 

UM(P) = XM(P, -£21) 

instead of XM(P, E'Jl)' we arrive at Weinberg's ex
pression. 

5. LORENTZ AND CPT TRANSFORMATIONS 

A. Properties of the Causal Functions 

From what preceded, it is easily verified that 

S~~,(x - y) = -iKf d
3

p 2 E(3.tpM(X, p, E)'ljiM(Y, p, E). 
E2> M 

(5.1) 
E = ± stands for the energy sign and tpMp(X, p, E) 
is given by (2.2). Hence S<±)(x - y) and also Sex - y) 

satisfy the homogeneous field equations 

(
S/lV aO + iKY/l - -aa )S(X - y) = 0, (5.2) 

Xv x/l1 

aO Sex - y)SlIv + iKS(X - Y)Y/l + ~ sex - y) = 0, 
Yv aY/l 

(5.3) 

Y/l ~ sex - y) + iKS(x - y) = 0, (5.4) 
oX/l 

~ sex - Y)Y/l - iKS(X - y) = 0. (5.5) 
aY/l 

These equations follow directly from Eqs. (1.4.32) and 
(1.4.33). For convenience we write 

Spp'(x - y) 

= S~~~(x - y) + S~-;;~(x - y) 

. f d3

p -= -IK 2E(3. - tpMp(X, p, E)tpMp'(Y' p, E). 
M.' E'Jl 

We prove now that 

tp(x) = iJ Sex - y)y~tp(Y) dl1iY) 

= i J sex - Y)Yotp(y)d3y, 

'Iji(x) = i J 'Iji(y)y~S(y - x) daiY) 

= if tii(Y)YoS(y - x)d3y. 

(5.6) 

(5.7) 

(5.8) 

We note first that the manifest covar~ant integrals are 
independent of the spacelike hypersurface a on which 
the integral is supposed to be performed. This is due 
to the fact that 

aO [Sex - Y)Y~tp(Y)] = aa [tii(Y)Y~S(y - x)] = 0. 
Y~ Y~ 

Writing 

tp/Y) = 2 fd3PC~II1:(p, E)tpMiy, p, E), 
M< 

where 

CM(P, +) = (K/E2»taM(p), 

cM(P, -) = (K/Elibt( -p), 

and making use of the expansion (5.6), we get 

if d3y[S(x - Y)Yotp(y)]p 

= K --2 2 E(3,CM.(P, E )tpMp(X, p, E) If d3pd3p' , , 

E21 M<M'<' 

X fr f 'PMp'(Y' p, E)[YOtpM'(Y' pi, e
l )]p,d3y 

= tp(x). 



                                                                                                                                    

DE SITTER SYMMETRIC FIELD THEORY. III 2037 

The last step follows from the orthonormality relation as 
(2.13). Relation (5.8) can be proved in the same way. J 

We note that, if A is an observable, then AV' is a (A) = -rp(x)YoA(x)V'(x)d
3
x 

solution of the field equations satisfied byV'. Thus, 
Eqs. (5.7) and (5.8) hold for AV': instead of the definition (2.17). It satisfies 

A(x)V'(x) = if sex - Y)YoA(y)V'(y)d3y 

= if sex - y)y",A(y)V'(y) da",(y); (5.9) 

A(x)V'(x) = if A(y)V'(y)yoS(y - x)d3y 

= i J A(y)V'(y)y"S(y - x) da..(y). (5.10) 

Further, we prove the invariance of Sex - y) under 
inhomogeneous Lorentz transformations. First, we 
note that it is invariant under translations. Moreover, 
under rotations, 

V"(x, Ap) = L(A, x)V'(x,p), 

ii/ex, Ap) = -rp(X,p)L-l(A, x), 

where L(A, x) is the homogeneous 4-dimensional 

rotation and L -1 acts on -rp by differentiation. For the 
infinitesimal transformations, 

L(x) = I - !;€It,[i(X'~ - Xlt~) + ~It,J. 
oXIt ox, 

Noting that d3(Ap)JEAP = d3pJE1" we write 

Spp,(x - y) 

= K I €P. V'Mix, 1\.p, €)V'Mp'(Y' 1\.p, €)-J - d3p 

M. Ep 

= K L I €(J.LpPI(x)L;!p'(y) 
PIP< Jll' 

Hence 

Sex - y) = L(x)S(x - y)L-l(y). (5.11) 

This relation holds for the inhomogeneous trans
formations as well. It follows that, for any generator A 
of the rotations and the translations, 

[(A), (B)] 

=ffd
3
xd3y I , I f -rpPI(x)[YoA(x)]P1PI' 

PIPl P.P, 
X V'Pl.(X), -rpP.(y)[YoB(y)]P2P2V'P2'(Y)} 

= if J d3xd3y[ -rp(x)YoA(x)S(x - Y)YoB(y)V'(y) 

- -rp(Y)YoB(y)S(y - x)YoA(x)V'(x)]. 

If A and B are two observables, we use (5.9) and get 

[(A), (B)] = (fA, B]). (5.13) 

Thus, the energy, momentum, and angular-momentum 
operators 

Pit = (-iSIt,ov + KYIt)' 

M ltv = (-i(xlt0, - x'0lt) + ~ltv) (5.14) 

satisfy the usual commutation relations 

[Pit' Pvl = 0, (5.15) 

[MitV' P"'] = i(0It"'Pv - 0v"PfJ ), (5.16) 

[MILV' M",p] = i(OIl",Mvp + dvpMIt'" 

- 0llpMv", - Ov",MIlP)' (5.17) 

To make these operators finite, we subtract from them 
their vacuum expectation values. Also, we have 

[(A), V',,(x)] =fd3y L [VlrCY)V'p'(Y)' V',,(x)](YoA(y»pp' 
pp' 

= - if [S(x - Y)YoA(y)V'(y)]"d3y. 

Thus, for observables, 

[(A), V'(x)] = -A (x)V'(x). (5.18) 

Accordingly, the infinitesimal inhomogeneous Lor
entz transformation of the Hilbert space is 

such that 

A(x)S(x - y) = sex - y)A(y). (5.12) U-11p(x)U = (1 - tiEltvJltv + ia IlPIt)1p(x) 

B. The Inhomogeneous Lorentz 
Transformation 

For our purpose it is more convenient to define the 
Hilbert space operator of a dynamical variable A(x) 

Here 
==; (1- !iEllvJllv + all0It)1p(x). (5.20) 

J IlV = -i(xllov - XVofJ) + ~"v> 
1'" = -is,,,ov + KY IL . (5.21) 
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The second line of (5.20) follows from the field equa
tions F"tp = -iolltp. 

From (5.20) and the integrability conditions (5.15)
(5.17) the corresponding relation for finite proper 
inhomogeneous transformation follows: 

U-I(A, a)tp(x)U(A, a) = tp'(Ax + a) 

= L(A, a)tp(x). (5.22) 

Further, for an observable, 

[(A), ¥i(x)] = if ¥i(Y)YoA(y)S(y - x)d3y 

= if ¥i(Y)YoS(y - x)A(x)d3y 

= ¥i(x)A(x), (5.23) 

which proves that 

U-I(A, a)¥i(x)U(A, a) = ¥i'(Ax, a) 

= ¥i(x)L-I(A, a). (5.24) 

This shows the unitarity of the transformation U of the 
Hilbert space. 

C. The Parity Operator 

In discussing the discrete transformations, we shall 
restrict ourselves to the expansion in terms of the 
eigenstates of the observable spin 

tp(r, t) = (21T)-~ ~ fd3p(~)! 
M Ep 

X [eiP"'aJj(p)U.u(p) + e-iP"'b!ip)Vll1(P)], 

Noting that the boost B(p, E) satisfies the relations 

B( -p, E) = B-I(p, E) = ~B(p, E)~, 

we obtain the following relation: 

~W'lI(-P,PO) = ~B(-p, E)CP.lI(E) 

= B(p, E)~CPM(E) 

= ~.WM(P,PO)' 

since ~CPM(E) = ~.CP.lI(E). Hence 

~UM( -p) = U.u(p), 

(5.25) 

~VM(-P) = ~_VM(P) = (-1)2).2VM (p)· (5.26) 

Under spatial inversion, 

tp(r, t) - ~tp( -f, t) 

= (2rrr~Jd3p(~)t .2 [eiP,"U M(p)aJ1(-p) 
Ep .11 

+ (-1)2;'2e- i P'"VM (p)b!1(-P)], (5.27) 

and 

Vier, t) - tp+( -r, t) 

= (21T)-t f d3p(;J! t [e-iP'"UM(p)a1i[C -p) 

+ (-1)2).'e iP'"VM (p)b M (-p)]. (5.28) 

The corresponding transformation of the Hilbert 
space is 

P = exp {ti1T ~ fd3p[bM(P)b1!tC-P) 
1~I 

- a1!t(p)aMC -P)]}. (5.29) 

It is unitary: P+ = P-l. It satisfies 

such that 

Hence 

PaM(p)p-1 = iaM( -p), 

Pa1!t(p)p-1 = -ia1!t( -p), 

Pb1i[(p)P-1 = (_1)2).%1i[(_p), 

PbM(p)P-1 = (-1)2).·+lib M(-p), 

Ptp(x)P-1 = i~tp( -f, t), 

P¥i(x)P-1 = -i¥i(-r, t)p. 

[P, Q] = [P, H] = [P, (Sk)] = 0, 

ppkp-l = -Pk· 

D. The Charge-Conjugation Operator 

(5.30) 

(5.31) 

(5.32) 

Under charge conjugation, tp - tpc =:= ~Ctpt, where 
C is the complex-conjugation matrix [cf. (1.2.45)]. The 
boost commutes with the charge-conjugation operator. 
Hence 

Further, under charge conjugation, ~k - -~k and 
Yo- -Yo' Since YOCPM(E) = ECPM(E) and ~3CP.lI(E) = 
MCPM(E), then CP'M(E) = ~CP-M( -E). From the normal
ization condition r/JjlCP .'1 = 1, it follows that I ~12 = 1. 
Using the property B( -p, -E) = B(p, E), we get 

Hence 

and 

U1I(P) = ~V_M(P), 

V~ll(P) = ~U-M(P), 

(5.33) 
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The corresponding transformation of the Hilbert 
space, 

1pC(X) = C1p(X)C-I, 

ipC(X) = Cip(x)C-l, 

is unitary and is given by C = C1C2' where15 

C1 = exp [i1T J d
3
p ~ b!l(P)b Jl1(P)} 

C2 = exp [i1T f d3
p ~ ~*b!l(p)a_M(p) 

- ~a11(p)b_M(P)l 
such that 

Hence 

Ca M(P)C-1 = ;b_M(p), 

CbM(p)C-1 = ;*a_M(p), 

Caj[(p)C-1 = ~*b:!:M(P), 
Cb!tCp)C-1 = ~a:!:"l1(p). 

CQC-1 = -Q, 

CP/lC-1 = P/l' 

C(S3)C-1 = -(S3)' 

E. The Time-Reversal Operator 

(5.3S) 

(S.36) 

(5.38) 

The canonical time-reversal operation is, as is well 
known,16. 

1pW(X) = pC1p*(r, -t) 

= (21Trtfd3p(~)\!:2 [a!i -p)pCU!tC _p)eiPX 

Ep M 

+ b~l( -p)pCVM _p)e-iPX
], (S.39) 

where a* and bT are the complex conjugate and the 
transposed operators in the Hilbert space. p is the 
space-time reversal operator: pyl' + YI'P = 0, 

[p, Sl'v] = 0. 

Using the properties [cf. Eqs. (I.2.4S)-(I.2.48)] 

(pctyopC = y~, 

(PC)+YkPC = -Y:, 

(pC)+'L.kpC = -'L.:, 

(pCtIXkPC = -IX:, 

one concludes that 

pC1>!t(€) = 'YJ1>-M(€)' 

where \1'}\2 = 1. Further, [p, B(p, E)] = ° and 

B*(p, €) = C+B-1(p, €)C = C+B( -p, €)C. 

Hence 

pCw!r( -p, Po) = B(p, €)pCCP!r(€) = 1'}W-M(P, Po)· 

(S.40) 

Accordingly, 

1pw(x) = 1'}(21T)-t f d3p(;} ~ [a~""rC -p)U M(p)eiVX 

+ b~M( -p)VM(p)e-iV
.,]. (5.41) 

The corresponding Hilbert space unitary operator W 
satisfies the usual relations 

1pw(X) = W1J!(x)W-\ 

ipw(x) = Wip(x)W-l, 

Wa.ltCp)W-1 = 1'}a~1I1( -p), 

Wb!1(P)W-1 = 1'}b~M( -p), 

Wajt(p)W-1 
::::: 1'}*a~M(-p), 

Wb M(P)W-1 = 'rJ*b~M( -p). 
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APPENDIX A: THE SCALAR PRODUCT 

In Paper I the Lorentz-invariant scalar product of 
two vectors 1J!1 and 1J!2 is defined by [cf. (1.4.91)] 

(1J!1' 1J!2) = f ipl(X)Ya1J!2(X) dCfa, (A1) 

where the integration is carried out over a spacelike 
hypersurface and 

dCfa = (dX2 dX3 dt, dX3 dX1 dt, dX1 dX2 dt, -id3x). 

The dependence of the scalar product on the hyper
surface Cf is given by the functional derivative 

If 1J!1 and 1J!2 are two solutions of the field equations, 
they satisfy Bhabha's equations 

y"o"1J! = -iK1J!, 

o"ipYI1. = iK1p, (A3) 

such that 
(A4) 

Thus the scalar product of two solutions of the field 
equations is independent of the hypersurface G, and 
we can use a flat surface t = const to evaluate this 
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scalar product: 

(?PI' ?P2) = f 1plYO?P2d3X . (AS) 

The expectation value of a dynamical variable A is 
defined as 

(A) = (?p, A?p). (A6) 

Since, for an observable, c/> = A?p is a solution of the 
same field equations satisfied by ?p, it follows that 

..! (A) = 0, 
ba 

(A7) 

and we can simply calculate (A) on a flat surface: 

with 

p12 = PI - ip2' p2i = PI + ip2, 

pH = Po + pa, p22 = Po - Pa. (B7) 

Ral"'a2i(j) a?d Pal"'a2i(j) are (2j + I)-row and 
-column matrIces, respectively, symmetric in the spinor 
indices. These matrix elements are given by [cf. 
(II.2.13)] 

E~-m' = (_1)2it,;m' 

= (-1)'+mbmm,[U - m)! U + m)!]!, 

fi:: m
' = E::m' 

= (-ll ibmm,[(j - m)! (j + m)!]!. (BS) 

(AS) Here ~':n and !..m are the matrix elements of Pal'" a2; and 
Pb

l
"'b

2
;' having a of the indices equal to 1. Hence, 

APPENDIX B: THE TENSOR t lll "' 1l2 ; 
mlm2 

Let c/> and X be two (2j + I)-column matrices 
carrying the representations D(O,j) and D(j, 0) of the 
Poincare group with mass K, respectively. To fix the 
notation, they transform under Lorentz transforma
tions as follows: 

c/>'(p') = L-l(p)cp(P) = L( -p)cp(p), 

X'(p') = L(p)X(p), (Bl) 
where 

L(p) = exp (01I: . p!p), (B2) 

sinh 01 = pIK, and the ~k are the spin matrices in the 
irreducible representation D{j) of 0(3). 

Weinberg7 has shown that, with appropriate nor
malization, cp and X are related as follows: 

cp = (_K)-2inW (p)X, 

X = (_Kr2inW(p)cp, (B3) 

where lll;)(p) is the mass-shell value of the expression 
(3.26). Here 

llW(p) = K
2;L-2(p), 

IT(i)(p) = K2i~(p). (B4) 

By solving the field equations (2.1), we have ob
tained the connection (B3) in a most suitable form. In 
fact, taking ,12 = j, we see that the Wigner components 
are ?p(A.2, 0) = X and ?p(0, ,12) = cpo Equations (11.2.7) 
and (11.2.9) lead directly to 

nW(p) = [(2j)!]-lpa I bI ••• pa2ib2; 

X Pal'" a2;U) @ RbI' .. h.;(j), (BS) 

nW(p) = [( _1)2 i{(2j)!]pa ,b, ... pa2;h2i 

X Ral .. 'a.;Cj) @ Phl ... h2;U). (B6) 

Here a. and h. are spinor indices taking the values 1, 2 

II~~.(p) = [U - m)! (j + m)! U - m')! (j + m')!]! 

X I [nl! n2! na! n4W1 

X (lir'(l2)n2(p2ir (l2)"4, (B9) 

where the summation is subject to the restrictions 

n1 + n2 = j + m, n1 + na = j + m', 

n1 + n2 + na + n4 = 2j. (BlO) 

Expanding in powers of PIl ' we finally get 

II~~.(p) = I T~I';y3Io)(j)p~lp~'p~3pJO, (Bll) 
11121alo 

where 

7"~r;,.~!a!o)(j) 

= 2S+S'(_1)13iI2dS (l1j)dS' ,(17T) 
mlm2 "2 ml'm2 2" 

Here 

and 

X [U + m)! (j - m)! (j - m')! (j + m')!J! 
n1 ! n2! na! n4 ! II! 12! la! lo! 

(B12) 

2s = 10 + la, 

2ml = m + m', 2m{ = m - m', 

2m2 = 10 - la, 2m~ = 11 - 12 , (B13) 

2nl = 10 + la + m + m', 

2n4 = 10 + la - m - m', 

2n2 = 11 + 12 + m - m', 

2na = 11 + 12 - m + m'. 

(B14) 

We note that 10 + Is - 1m + m'l and It + 12 -
1m - m'l should both be even and nonnegative. This 
restricts the admissible /'s for a given m and m'. The 
d!nmI U-7T) in (B12) is the usual rotation matrix. 
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-We note also that 

jjw(p, Po) = n<il( -p, Po), 

such that 

as already pointed out by Weinberg. 
To make sure that there is no phase difference 

between expressions (B4) and (B5), we note that in the 
rest system h = 0 and Po = K. Expression (B4) leads 
to 7T(i)(O, K) = K2iJ. Using (B9) , we get, in favor of 
(BlO), 

proving the equality of (B4) and (B5). 
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First, second, and third peratizations'are performed for evaluation of the scattering length for repulsive 
potentials of the form V(r) = gr-m exp (AJr) with m an integer ~4. For m == 4 a nontrivial result is 
found in second and higher peratization which has the same weak-coupling limit as the exact answer 
and agrees with the result of Calogero and Cassandro. For m > 4 one finds a zero result in both first, 
second, and third peratization, suggesting the inadequacy of the procedure as generally applied. The 
procedure of separate peratization of numerator and denominator of a ratio which is employed in this 
work is discussed at length. The optimum n method is introduced in the course of this discussion as a 
powerful and convenient method of evaluating the scattering length without summing the appropriate 
series. It also clarifies the limitations of the peratization approximation. A modification of the peratiza
tion procedure is suggested which has promise of being a more successful approximation scheme. 

I. INTRODUCTION 

In this article a procedure is presented for calcu
lating the scattering length by successive peratizations 
for the class of repulsive singular potentials of the 
form 

(1) 

where m is an integer greater than or equal to four. 
The calculation with m = 4 has been performed by 
Calogero and Cassandrol (CC) with one form of 
regularization and is significant in that it, and a very 
closely related potential1.2 V'er) = r-4(ge;,Jr + g'), 
are the only potentials for which the peratization 
prescription seems to provide a successive approxi
mation procedure in the leading coupling constant. 
This is to be distinguished from potentials, having an 
additive weaker singularity, which can be peratized 

in the coupling constant of the weaker part.3 •4 It is 
therefore of particular interest to ascertain whether 
such a result might perhaps be characteristic of other 
exponentially singular potentials, or whether the CC 
result is only a fluke. We find the latter to be the case. 
In the present calculation we do not know the exact 
expression for the scattering length (except when 
m = 4), but we do have a tractable procedure for 
calculating peratization approximations. The calcula
tion is performed up to third peratization. The fact 
that the first three peratizations give zero is an indica
tion that the procedure is not practical if it converges 
at all, which is doubtful. For the m = 4 case, we 
find that a higher peratization, which has not been 
calculated previously, gives an improved approxima
tion to the correct answer. 

In Sec. II the calculation of the scattering length 



                                                                                                                                    

DE SITTER SYMMETRIC FIELD THEORY. III 2041 

-We note also that 

jjw(p, Po) = n<il( -p, Po), 

such that 

as already pointed out by Weinberg. 
To make sure that there is no phase difference 

between expressions (B4) and (B5), we note that in the 
rest system h = 0 and Po = K. Expression (B4) leads 
to 7T(i)(O, K) = K2iJ. Using (B9) , we get, in favor of 
(BlO), 

proving the equality of (B4) and (B5). 

JOURNAL OF MATHEMATICAL PHYSICS 

* On leave of absence from Cairo University, Giza, U.A.R. 
1 M. M. Bakri, J. Math. Phys. 10,298 (1969). This is Paper 1. 
2 M. M. Bakri, A. F. Ghaleb, and M. 1. Hessein, J. Math. Phys. 

11, 2015 (1970). This is Paper II. 
3 Wu-Ki Tung, Phys. Rev. 156, 1385 (1967). 
4 S. Weinberg, Phys. Rev. 181, 1893 (1969). 
• D. L. Pursey, Ann. Phys. (N.Y.) 32, 157 (1965). 
6 cr. Y. Takahashi, An Introduction to Field Quantization (Perga-

mon, Oxford, 1969). 
7 S. Weinberg, Phys. Rev. 133B, 1318 (1964). 
8 R. Shaw, Nuovo Cimento 33, 1074 (1964). 
9 M. M. Bakri, Nucl. Phys. B12, 341 (1969). 

10 G. S. Guralnik and T. W. B. Kibble, Phys. Rev. 139B, 712 
(1965). 

11 S. J. Chang, Phys. Rev. Hi1, 1316 (1967). 
12 S. J. Chang, Phys. Rev. 161, 1308 (1967). 
13 A. McKerrel, Ann. Phys. (N.Y.) 40, 237 (1966). 
14 Cf. M. E. Rose, Elementary Theory of Angular Momentllm 

(Wiley, New York, 1957) . 
.. The charge-conjugation operator was taken by Takahashi (Ref. 

6, p. 167) to be C2 only. However, this would lead to the wrong sign 
in the transformation of b...,(p) and b:li(P). 

16 Cf. Ref. 6, p. 181. 

VOLUME 11, NUMBER 7 JULY 1970 

Peratization of a Class of Exponentially Singular Potentials * 
WILLIAM M. FRANK AND DAVID J. LANDt 

u.s. Naval Ordnance Laboratory, Silver Spring, Maryland 20910 

(Received 5 September 1969) 

First, second, and third peratizations'are performed for evaluation of the scattering length for repulsive 
potentials of the form V(r) = gr-m exp (AJr) with m an integer ~4. For m == 4 a nontrivial result is 
found in second and higher peratization which has the same weak-coupling limit as the exact answer 
and agrees with the result of Calogero and Cassandro. For m > 4 one finds a zero result in both first, 
second, and third peratization, suggesting the inadequacy of the procedure as generally applied. The 
procedure of separate peratization of numerator and denominator of a ratio which is employed in this 
work is discussed at length. The optimum n method is introduced in the course of this discussion as a 
powerful and convenient method of evaluating the scattering length without summing the appropriate 
series. It also clarifies the limitations of the peratization approximation. A modification of the peratiza
tion procedure is suggested which has promise of being a more successful approximation scheme. 

I. INTRODUCTION 

In this article a procedure is presented for calcu
lating the scattering length by successive peratizations 
for the class of repulsive singular potentials of the 
form 

(1) 

where m is an integer greater than or equal to four. 
The calculation with m = 4 has been performed by 
Calogero and Cassandrol (CC) with one form of 
regularization and is significant in that it, and a very 
closely related potential1.2 V'er) = r-4(ge;,Jr + g'), 
are the only potentials for which the peratization 
prescription seems to provide a successive approxi
mation procedure in the leading coupling constant. 
This is to be distinguished from potentials, having an 
additive weaker singularity, which can be peratized 

in the coupling constant of the weaker part.3 •4 It is 
therefore of particular interest to ascertain whether 
such a result might perhaps be characteristic of other 
exponentially singular potentials, or whether the CC 
result is only a fluke. We find the latter to be the case. 
In the present calculation we do not know the exact 
expression for the scattering length (except when 
m = 4), but we do have a tractable procedure for 
calculating peratization approximations. The calcula
tion is performed up to third peratization. The fact 
that the first three peratizations give zero is an indica
tion that the procedure is not practical if it converges 
at all, which is doubtful. For the m = 4 case, we 
find that a higher peratization, which has not been 
calculated previously, gives an improved approxima
tion to the correct answer. 

In Sec. II the calculation of the scattering length 



                                                                                                                                    

2042 W. M. FRANK AND D. J. LAND 

in two different regularizations is expressed in the 
form of a ratio Nj D, and the coefficients of the power 
series are expressible in terms of certain multiple 
integrals. The peratization procedure employed in 
this work consists of the separate expansion of 
numerator and denominator into leading singularities 
rather than the direct expansion of the Born series. 
In Sec. III the peratization of Nand D is performed 
and the first peratized scattering length is calculated. 
In Sec. IV the "optimum-n" point of view is introduced 
as a convenient means of analyzing the separate 
peratization of numerator and denominator and as a 
neat, quick way of summing the power series for N 
and D. Section V deals specifically with the peratiza
tion of a.ratio. Some aspects of this question are also 
discussed in Appendices A and D. In Sec. VI higher
order peratizations of the scattering length are com
puted. The optimum-n method is used to show why 
any peratization procedure which is purely me
chanical should not be expected to yield significant 
results. Some general discussion is presented in Sec. 
VII. 

II. CALCULATION OF THE SCATTERING 
LENGTH 

We follow the prescription of calculating the 
scattering length for a repulsive singular potential as 
the limit of the scattering length of a regularized 
sequence of potentials5 VCr, IX), where V(r, 0) = VCr) 
and VCr, IX) is nonsingular for IX ¥: O. While there are 
examples where such a limiting procedure does not 
apply,6 it can be shown 7a, b to be legitimate for the regu
larizations used in the present article. We consider 
two alternative regularizations, the "0 regularization" 
where the singular potential VCr) is considered as the 
limit as IX -+ 0+ of the potential sequence 

V9(r, IX) = V(r)O(r - IX) (2) 

[O(x) denotes the step function which is unity for 
nonnegative values of x and zero otherwise], and the 
"+ regularization" where VCr) is considered as the 
limit as IX -+ 0+ of the sequence 

V+(r, IX) == VCr + IX). (3) 

The negative of the scattering length - A (g) is express
ible as the ratio of the two power series8 

(4) 

The regularized scattering lengths are denoted, Then 
respectively, by A9(g, IX) and A+(g, IX). In an obvious 
notation we write 

00 00 

NY(g, IX) = I gnN~(IX), DY(g, IX) = I gnD~(IX), (5) 
n=1 n=O 

where y = 8, +. The dependence on the variable g, oc 
is frequently suppressed in the notation. 

With VCr) as in Eq. (1), one finds 

n 
X e~I:lIi II (Yl ... Yn)m-4, 

;=1 
(6) 

where the variable changes r j = yjI (j = 1, ... , n) 
have been made. We introduce the parametrized 
integral 

(1/a (112 n 
J(Pl"", Pn) == Jo dYn" 'Jo dYl exp ~/pjYi),(7) 

D~(IX) = (Or· .. 0~)01(02 - 01) ... (an - an-I) 

x J(PI' .. : ' Pn)lp=,<, (8a) 

where f" == m - 4, aj == alop;, and one eventually 
sets all the pj = A.. One finds similarly that 

N~(IX) = (ar ... 0~)e02 - ( 1) ••• (an - an-I) 

x J(PI"", Pn)Ip=l' (8b) 

For the + regularization one finds 

1
00 1rn-1 D+(IX) = dr' . . dr (r - r ) ... (r - r ) n I n 1 2 n-1 n 

o 0 

X rn V(r l + IX)" . vern + IX) 

= LX> dX I ••• 1'''.-1 dx n(xi - x 2 ) ••• (xn- 1 - xn) 

x (xn - IX)V(X I ) .•• V(xn), (9) 

where the variable changes Xi = rj + IX (j = 1,' .. ,n) 
have been made. Following through with the variable 
changes Xi = Yjl (j = 1 ... n), one readily finds 

D!(IX) = (or· .. O~)01(02 - 01) ••• (an - an-I) 

x (1 - IXon)J(PI' •.. , Pn)lp=;. (lOa) 
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and 

Nt(<x) == (ai ... a~)(l - <xal )(a2 - at) ..• (a" - a,,-I) 
x (1 - rxV,,)J({JI' ..• , (J,,)lp=,,' (lOb) 

We work with quantities D~(<x:{JI' ... ,(J,,) == D~(oc:{J) 
and N~ (rx: {JI , •.. , (J,,) == N~ (rx: (J), which are merely 
the appropriate expressions on the right side of Eqs. 
(8a, b) and (lOa, b) without the (Ji = A substitution. 

III. PERATIZATION OF N(g, oc) AND D(g, oc) 

We proceed to peratize A(g, rx) by peratizing 
N(g, <X) and D(g, rx) separately and evaluating the 
ratio. The appropriate prescription for doing this so 
that it is equivalent to the peratization of the Born 
series is discussed in the course of the article. 

One readily recognizes that the integralJ({J1 , ... , (J,,) 
of Eq. (7), when evaluated at the point {JI = {J2 = 
.•. (J" = A, results in an nth-degree polynomial in the 
variable e"J". The same set of terms appear in the 
D~(<x) and N~(<x) (y == (), +) with each power of eM" 
multiplied by some polynomial (with positive and 
negative exponents) in l/oc. The most singular exponen
tial dependence contains the term e"M~, and through
out the larger portion of this work our peratization 
retains only terms connected with this factor. We 
cast out all powers of eU " of degree less than n through 
the simple device of setting all the lower limits in the 
integrals in Eq. (7) equal to - r:J:). We denote this 
"exponentially peratized" integral of Eq. (7) by 
]({JI' .•. , (J,,): 

]({Jl' ... ,(J,,) = f: dy" .. -f~~dYl exp ~1({JiYi) 
1 e1JaT.Pi 

{Jl({Jl + (J2) ... ({JI + (J2 + ... (In) 

== P({JI' .•. , /3n) exp e 2 /3i)' (11) 

The quantities D~ (oc) and N~ (rx) (y = (), + 1) are to 
be understood as being "exponentially peratized" for 
the remainder of this work, unless it is otherwise 
stated. They are calculated through Eqs. (Sa, b) and 
(lOa, b) from ]({JI , ..• , (In)' One can now proceed to 
peratize the polynomial (in l/rx) factor of exp (nA/oc) 
in the D~(Cl) and N~(rx), through selective retention of 
terms of the higher degrees in 1/(1... We define "first, 
second, etc., peratization" as the procedure for retain
ing the most, second most, etc., singular terms in the 
polynomial factor. These peratizations are algebrai
cally feasible, and we explicitly perform the first three. 

The following identity is helpful: 

(V2 - at) ... (a" - vn-I)P({JI, ... , {In)eWE.P; 

= (~/,)p2({Jl" .. ,{In)e11,,,,£Pi. (12) 

The sth-order peratization contribution to the 
quantities D~ (rx: /3) and N~ «x: /3) appropriate to the 
exponential potential r-I'-4 exp (Air) are denoted in 
a changed notation respectively as D~~(n, oc:{J), 
Nj~(n, (I..:{J). The absence of the superscript (s) denotes 
the quantities with no further peratization than the 
"exponential peratization" which has been done in 
all cases [corresponding to setting the lower integra
tion limits on Eq. (7) equal to - 00]. Indices or argu
ments will frequently be dropped when confusion is 
unlikely. Simple calculation gives for D~~(n, (I..:{J) = 
D~~({J), N~~(n, rx:{J) = N~~({J), 

Deo({J) = [(1..-12 (J + 1 - 2(2 (J)H({J)]M({J), (13a) 

Neo({J) = (2 (J)M({J), (13b) 

D+o({J) = [1 - 2aH({J)]M({J), 

N +o({J) = 2rx2H({J)M({J), 

where 2 {J = 27=1 (Ji' 

M({J) = p 2({J)e1J"("£PI 

(14a) 

(14b) 

{J~({J1 + {J2)2 .•. ({Jl + {J2 + ... {In)2 

1 x exp - (2 (J), (l5a) 
rx 

H({J) = 1. + _1_ + ... ___ 1 __ 
{J1 {J1 + {J2 {JI + {J2 + ... (In 

Proceeding from the relations 

Dyi{J) = (ar ... v~)Dyo({J), 

we find 
Nyi{J) = (v'; ... v~)Nyo({J), 

DW({J) = <x-1I1'-1(2 (J)M({J), 

m!)(fJ) = (X-nl'[n,u + 1 - 2(2 (J)H({J) 

- 2,u(2 (J)K({J)]M({J), 

N~~I({J) = (X-1I1'(2 (J)M({J), 

NW({J) = ,urx-nl'+1[n - 2(2 (J)K({J)]M({J), 

D~~({J) = rx-nI'M({J), 

D<':~({J) = -2(1..-III'+1[H({J) + ,uK({J)]M({J), 

N~~({J) = 2<x-nl'+2H({J)M({J), 

N<':~({J) = -2,urx-nl'+3[L({J) + 2H({J)K({J)]M({J), 

where 

K({J) == 1 j , 
i=I{J1 + {J2 + ... + (Ji 

L({J) == i j . 
1=1 ({Jl + {J2 + ... + (J,)2 

The quantities 
DCs) == D(sl({J)1 _ 

vU 'VII. 8-1 

(15b) 

(16) 

(17a) 

(17b) 

(17c) 

(17d) 

(17e) 

(17f) 

(17g) 

(17h) 

(18) 
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found from the substitution Pi = ), yield the desired 
coefficients fot the appropriately peratized power 
series from which one calculates the scattering length. 
The calculations of N~~(P) and D~~(P) are outlined in 
Appendix C, and are not listed owing to their un
wieldy form. Using the notation 

1 nIl 
H(P)lfJ=J- = ),L({.J)lfJ=J. = - 2 -: == - H n (19) 

). j=l } A 

and the results in Appendix C, one readily finds 

[xo == 2),-1\1.-11/2 exp (Af2\1.)]: 

DO) _ An (Xo/2)2n 
8" - oc n!2 ' 

(x /2)2n 

D(2) = (1 + np - 2nH _ 2pn2) _0 -
B" n n!2 ' 

D~~) = 2poc n[pn 2 
- Up + 2)n 

), 

+ (2n + !)H nl (Xo!;r
n 

, 
n. 

N
(l) _ 1 (Xo!2)2n 
8" - 1In ,2' n. 

N(2) = u\l.n(l _ 2n) (XO/2)2n 
BII , ,Z ' n. 

(20a) 

(20b) 

(20c) 

C20d) 

(20e) 

N~!) = 2~OC2 n[pnZ _ (!p + 2)n + !Hn + 1] (xo/;t
n 

, 
11 n. 

(20f) 

(20g) 

D(2) __ 20c (H ) (Xo/2)2n 
+11 - 1 n + pn 12 ' 

11 n· 
(20h) 

D(3) = 2p\l.2 [un 2 + 2nH 
+11 ).2 r n 

+ (lp - 2)n + -iH n] (xo!;t
n 

, (20i) 
n· 

(20j) 

(20k) 

(3) 4poc4 
2 (xo/2)2n 

N+II = -3 Hn[pn + (tp - 2)n +!p - 1] --,2-' 
), n· 

(201) 

The ubiquitous (n !)-2 is to be noted. Its appearance 
follows from very general principles, and its signifi
cance is indicated in the following section. Note also 

that some of the second peratized and all of the third 
peratized quantities vanish when p = O. This is due 
to the small number of terms in the polynomial 
coefficient of the leading exponential factor for 
m = 4, reflecting the especially simplifying features of 
that potential. 

The first peratized scattering length can be found 
readily by summing the respective N~~)(n, (I.) and 
D;~(n, (I.). These summations give rise to the Bessel 
functions of imaginary argument,s Io{z) and Ko(z) , 
where Io(z) is the regular solution normalized by 
10(0) = 1, and Ko(z) has exponential decay for large 
positive z and is normalized by Ko(z) ~ (7T/2z)! x 
exp (- z) for large z. One finds (x = gfxo) 

A~~(oc) = -oc, (2la) 

A(l)(oc) = _ 2oc
2 

Ko(x) + (1n tx + y)Jo(x) (2Ib) 
+11 ). Jo(x) , 

where y = 0.5772 is the Euler-Mascheroni constant. 
For both It = 0 and u > 0, A(l) vanishes as oc -+ O. 

It is of interest to note that Cornille7a has calcu
lated the first peratized scattering length for the 
general class of potentials 

VCr) = gr-mel.!r', 

m> 3, s,). > 0, 

and has obtained zero in all cases. 
One might be tempted to calculate the higher-order 

peratized scattering lengths in a similar way. However, 
the separate expansion of the numerator and denomi
nator to a given order of peratization results in a Born 
series which would contain the correct contribution 
to that order of peratization plus some additional 
contributions from a higher order of peratization. 
One might expect that the presence of these additional 
terms of higher order would not be problematic if the 
sequence of peratizations of the Born series converges. 
However, such an expectation would not be vindicated 
if the additional higher-order terms were large. This 
is in fact frequently the case with these additional 
higher-order terms. This situation can be analyzed if 
we introduce the optimum-n method, which is a 
simplifying and labor-saving device in calculations 
and which also sheds light on the analytic structure of 
the scattering length itself. 

IV. OPTIMUM-n METHOD 

Some analytical labor can be dispensed with, and 
much insight into both the mechanisms and the 
flaws of peratization can be discerned, if we employ 
a convenient procedure which we call the "optimum
n" method. This method is capable of giving order of 
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magnitude estimates in the asymptotic limit for 
functions of known exponential order and type10

; in 
the case of a quotient of two such functions where all 
coefficients of the power series are positive, the 
method gives the exact asymptotic limit. The scattering 
length in fact has been expressed as the ratio of two 
entire functions of g, N(g) and D(g), with positive 
coefficients. In the case of scattering by regular 
potentials, the exponential order and typelO of these 
functions are knownY-13 The optimum-n method 
will be described in detail in a subsequent article. We 
presently outline the leading ideas. 

We consider an entire functionf(z) of finite order. 
A theorem in the theory of entire functions due to 
BoreP4 states that, for large r = Izl, 

In /;,(r) --In M(r), (22) 
where 

M(r) == max I/(r)l, (23a) 

and 
Izl=r 

/Ar) == max Icnrnl == cn(r)rn(rl, (23b) 
n 

withf(z) = I cnzn
• Qualitatively, this theorem states 

that the maximum modulus of fez) on a circle of 
sufficiently large radius r has the same growth (meas
ured in a logarithmic scale) as the maximum term of 
the series. We denote by nCr) the exponent of the term 
which dominates for Izl = r. (It need not be unique, 
but for simplicity and with no real loss of generality 
we shall assume that it is.) For a given value of r = 
Izl, we term n(r) the "optimum-n" of the function 
fCz) for Izl = r. Finer estimates of the relation 
between M(r), f.l(r), and nCr) can be found in special
ized monographs. ls In particular, if, for large r, 

In M(r) "'" rrP 

(,- being the type), thenl6 one has 

nCr) -- prrP. 

(24) 

(25) 

This result is readily derived heuristically, if, in the 
spirit of Borel's theorem, one writes M(r) -- f.l(r). 
If all the coefficients of the power series are positive, 
then one findsf(r) = M(r) for positive r. The additive 
error term in Eq. (22) corresponds to a multiplicative 
error factor in the ratio M(r)/f.l(r). However, in 
evaluating the ratio of two entire power series with 
positive coefficients and the same exponential order 
for positive r, as in the case of the scattering length, 
N/D, or certain Green's functions, the ansatz 

M(r) -- f.l(r) = cn(r)rn(r) (26) 

for each power series turns out to give the correct 
asymptotic limit. We call this the "optimum-n" 
method. 

In the case of scattering by regular potentials, the 
scattering length , given by Eq. (4), is expressed as the 
ratio of two functions of the coupling constant g, 
which are entire and of exponential order tY-13 
The fact that p = t for D(g) originates in the (n !)-2 
factors which are characteristic of Dn and N n • This 
i5 discussed in Appendix B, where it is shown that 
p = t for N(g) also. In addition, it is shown there that 
the type r for both N(g) and D(g) is given by 

r = LXl dr[V(r)]t, 

if VCr) belongs to a fairly general class of purely 
repulsive potentials. The coefficients in the Nand D 
power series are all positive. Hence, the optimum-n 
method prescribes the evaluation of the scattering 
length for these potentials in the limit of large g to be 

-A(g) ~ Nn(g)/Dn(u) ' 

where neg) is found from Eq. (25) to be neg) = prgP. 
The foregoing considerations are also applicable in 

the case of scattering by singular potentials. One 
introduces the regularized potential VCr, tl) and 
calculates the Nand D functions, now denoted as 
N(g, tl) and D(g, tl), in terms of this potential. The 
exponential order of N(g, tl) and D(g, tl) as a function 
of g is stilli. This explains the gi singularity of singular 
potential wavefunctions. The type is given by 

r == r(tl) = i'Xldrvi(r,tl) = LXldrV!(r). (27) 

The last expression on the right holds for either + or 
() regularization. If we let f( tl) be the tl-dependent part 
of r(lX) [note that, in general, r(tl) contains an 
additive tl-independent part arising from the upper 
limit of integration in Eq. (27)], N(g, tl) and D(g, IX) 
can be expanded as 

00 gnf(tl)2n 
N(g, tl) = I q(n, IX), (28a) 

1 (2n)! 

00 gnf(ex)2n 
D(g, tl) = I pen, IX), (28b) 

o (2n)! 

where q(n, tl) and pen, tl) generally have polynomial 
growth in n. These expressions can be shown to hold 
for several solvable potentials and can be inferred 
from the following argument. It can be shownl7 that 
upper and lower bounds for the Jost solution evaluated 
at r = IX for monotonically decreasing repulsive 
potentials are given by 

D(g, ex) < exp g''T(IX), 

D( ) > 1 + 
VieR) . h2 gtr(tl, R) 

g, tl i sm , 
V (IX) 2' 

where R is the value of a cutoff imposed on the 
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potential in obtaining the lower bound and 

lR ! 
T(:X, R) = a drV (r). 

One notes that T(:X) = 7'(:x)[1 - T1/7'(:x)] and T(:X, R) = 

7'(:x)[1 - T2/7'(:x)], where T1 and T2 denote the :x
independent parts of T(:X) and T(:X, R), respectively. 
Hence the product g!7'(:x) is common for both upper 
and lower bounds. The discussion of Appendix B 
shows that similar results hold for N(g, :x). 

The optimum-n method can now be applied if one 
chooses as the expansion parameter of N(g, :x) and 
D(g, :x) not simply g, but rather g7'2(:x). Then fo~ :x 
near zero, one is effectively in the strong coupl1Og 
regime, where the estimates of Eqs. (22), (23), (25), 
and (26) are appropriate. The exponential order of N 
and D as functions of the new variable g7'2(:x) is still 

h . 18 P = t and the type can be found from t e expressIOn 

T = lim sup [(2n)! cS/(2nl, (29) 
n-> 00 

where Cn represents either coefficient q(n,:x) or 
pen, :x) in the expansion of N(g, :x) or D(g, :x). The 
optimum-n method thus prescribes the evaluation of 
A by 

-A = lim q[n(g, :x), :x]/p[n(g, :x), :x], (30) 
a->O 

where the optimum-n dependence n(g,:x) has been 
explicitly indicated in the argument of p(n,:x) and 
q(n, :x) and can be found from Eq. (25) with p = t 
and T as given by Eq. (29). One notes that a common 
factor gn7'2n in the numerator and denominator of Eq. 
(30) has been cancelled. 

We illustrate the method by calculating the first 
peratized scattering length for the potential VCr) = 
grmeJ./r. From Eqs. (20) it is clear that the prop~r 
expansion variable g7'2(:x) is gx~(:x) == x2(:x). In addI
tion we find from Eqs. (20) the type of Nand D as a 
function of X2(:x) to be unity. The optimum-n value 
neg, :x) is therefore 

! 
!L :x- n/ 2eJ./2a. 

A 
Noting that19 

n 

Hn == L r 1 = "P(n + 1) + Y ~ In n + y 
j=l 

for large n, we find the first peratized scattering 
lengths to be 

(0 _ N~~[n(g, :x), :x] = 2:x2 
H 

-A+i:x) - (1) ]). n(g.a) 
D +Il[n(g, :x), :x 

= 2:x2(ln g! :x-1l/2 + l:. + y), (31a) 
A A 2:x 

(1) N~~)[n(g, :x), :x] _ (31b) 
-Aell(oc)= (1) -oc, 

Dell [neg, IX), IX] 

and in the IX -+ 0 limit both of these vanish, in accord
ance with the results obtained above by explicitly 
summing the series. 

V. PERATIZATION OF A RATIO 

We now use the optimum-n method to analyze the 
separate peratization of numerator and denominator 
of a ratio. According to the prescriptions of this paper, 
one expands both numerator and denominator in 
terms of singular basis functions, keeps the first s 
leading singularities, and then takes the ratio to 
obtain the sth peratized scattering length. An impor
tant consideration for the peratization of a ratio is 
that the numerator and denominator contain no 
"spurious" singular basis functions. This point is 
discussed at length in Appendix A. 

It is generally the case that the singular basis 
functions which appear in calculations are to be 
found from the peratization of the factor T(:X) or 7'(IX). 
Thus, from Eq. (28) we see that the sth peratization 
of Nor D may be obtained from the product 

g"(Tl + T2 + ... + Ts)2n(qi + q2 + ... + qs), (32) 

where the summation .2~ 7'i == T(s) is simply T s
peratized and the summation .2 qi is an expansion of 
of the factor q(n, :x) in appropriate basis functions 
(in :x). Note that Tk and qk are functions of:x and qk is 
a function of n (these arguments will frequently be 
suppressed in the interest of simplification. of nota~ion). 
In addition, the qk are generally not smgular 10 IX. 
However, in the actual calculation of the sth peratized 
Nand D, one does not obtain the complete product 
of Eq. (32) which contains higher-order terms in IX, 
but only the first s leading singularities. For example, 
D(I) is written 

(33a) 

while D(2) so obtained is given by 

(33b) 

Similar expressions hold for N(s) also. The first 
peratized scattering length is given by the optimum-n 
method as 

-A (1) = lim qI[n(g, IX), :X]/Pl[n(g, :x), :x], (34) 
0:->0 

where the explicit n dependence of the p and q factors 
has been exhibited. Note that the common factor 
gn7'~n(lX) has been cancelled in Eq. (34). 

Using Eqs. (33a) and (33b) for D(1) and D(2) and 
analogous expressions for N(I) and N(2), one might 
try to calculate the second peratized scattering 
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length A(2) from 

_A(2)( ) = l' N(1)[n(g, oc), IX] + N(2)[n(g, IX), IX] 
g 1m (1) ( ) ] D(2)[ ( ) ] ~-+O D [n g, IX ,IX + n g, IX ,IX 

= lim (gT~t(qi + 2nT1IT2qI + q2). (35) 
~-+O (gT~t(PI + 2nT1IT2PI + P2) 

The exponential order of Nand D peratized s times 
as a function of gT~ is ! and the type is generally unity, 
so that the optimum-n value computed from Eq. (25) 
is simply n(g, IX) = !glTI(IX). Thus we have 

_A(2) = lim (ql + glT2qI + q2)/(PI + glf2Pl + P2)' 
~-+O 

(36) 

It is usually true that the Tk do not approach a 
constant as IX --->- 0; i.e., Tk is either infinite, as will be 
seen for the potential gy-meur with m > 4, or ap
proaches zero as for the case with m = 4 ('1'1' of 
course, is infinite). If '1'2 --->- 0, then A(2) becomes 

_A(2) = lim Ql[n(g, IX), IX] + q2[n(g, IX), IX]. (37) 

~-+O Pl[n(g, IX), IX] + P2[n(g, IX), IX] 

However, if '1'2 --->- 00, one finds that 

_A(2) = lim QI[n(g, IX), IX] , (38) 
~-+O PI[n(g, IX), IX] 

which is the same as A(l), so that second peratization 
in this case appears to give no improvement. This 
result, however, is in contradiction with a solvable 
example presented in Appendix D, for which second 
peratization in terms of the Born series does indeed 
give an improved value for the scattering length. 4 

The root of this discrepancy lies in the method just 
employed of the separate peratizationof the numerator 
and denominator of a ratio. Upon forming the 
quotient to obtain the Born series, one finds that the 
higher-order terms that are present in the quotient 
can be effectively large. This can be illustrated easily 
by Eq. (36). If peratization does succeed, one would 
expect higher peratizations to be in some sense 
corrections to first peratization. Hence one should be 
able to expand the denominator of Eq. (36) to obtain 

_A(2) = lim q;[l + q2 _ P2 
~-+O Pi qi Pi 

- g!.T2(h +~) + ... J 
Pi ql 

As IX --->- 0, A(2) becomes infinite because of the effect 
of the divergent quantity '1'2' However a careful 
scrutiny of Eqs. (28) and (32) suggests a flaw in our 
calculation of A(2). The exact Nand D functions 
corresponding to the regularized potential should be 

expanded in terms of the variable gT2(1X) as appro
priate for optimum n and it was subsequently suggested 
that the sth peratized Nn and Dn can be obtained from 
the product gn(I~ Tk )2n(!1 qk)' This situation is a 
strong indication that the appropriate expansion 
parameter for the peratized Nn and Dn ought to be 
g[T(8)(oc)]2 rather than gT~ = g(T(1»)2, which has just 
been used. Thus, in order to introduce this variable 
in second peratization, it is necessary to add to the 
numerator and denominator of Eq. (35) the terms 
2nTin-1T2q2 and 2nTin-1T2P2, respectively. These terms 
are less singular in IX than the terms which have been 
retained, but they would appear together with other 
terms of the same degree of singularity in higher-order 
peratizations. Thus we have, in place of Eq. (35), the 
expression 

A
(2) l' gn(T~n + 2nT~n-IT2)(ql + q2) (39) 

- = 1m n -2n -2n-l- ' 
~-+O g Crt + 2nTl T2)(PI + P2) 

and the undermining effect of the term '1'2 discussed 
above is eliminated. We note that the common 
factor in this expression can be written 

T;n + 2nT;n-lT2 = [('1'1 + T2)2n](2) = (T(2»2n, 

and hence the variable of expansion is effectively 
g(T(S»2 with s = 2 in this case. Note that the second 
and third members of the above expression are equal 
only to second peratization. We call the above pro
cedure the "completion of the T factor." 

The foregoing development was carried out within 
the context of the optimum-n method. However, it is 
clear at this point that the completion of the T factor 
is also required and follows through readily when 
the series in the. numerator and denominator are 
explicitly summed. When one completes the T factor 
to a given order of peratization, the numerator, 
denominator, and Born series are automatically 
expressed in terms of the quantity g[T(8)(IX)]2 as the 
expansion parameter which diverges in the IX --->- ° limit. 
The ratio of the numerator and denominator so 
peratized contains additional terms of higher order of 
peratization in the Born series, but these are finite for 
the classes of potentials of interest. These would be 
expected to converge if the sequence of successively 
peratized Born approximations does. The general 
method described here and applied to second perati
zation also applies in higher orders of peratization. 
These considerations are well illustrated in a nontrivial 
way in Appendi~ D with an exactly solvable potential. 

We note in passing that the procedure of com
pleting the T factor is automatic in first peratization 
inasmuch as the first peratized T(oc) is used anyway. 
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Thus the preceding calculations of Secs. III and IV 
for the first peratized scattering length for the poten
tial VCr) = grmeJ./r stand unchanged. 

VI. HIGHER-ORDER PERATIZATIONS 

The procedure of completing the T factor now 
makes it possible to calculate the higher-order 
peratizations for the potential VCr) = gr-meJ./r. The 
primary quantity of interest, T(ex) , is obtained from 
T(Cl) and from Eq. (27) we find 

roo e)./2a 2 {(e)'/2a - 1), fl = 0, 
T(ex) = Ja dr rm /2 = ~ ex-I'/2e)'/2a[1 + O(ex)], fl > O. 

(40) 

For m = 4 (fl = m - 4), Tl(ex) alone is nonvanishing 
and peratization does not require the completion of the 
T factor, but, for m > 4, T2(ex) certainly diverges and 
hence in this case it is necessary to complete the T 

factor. 
We first calculate the second peratized scattering 

length for the case m = 4, the potential discussed by 
CC. The optimum-n value is readily found to be 

f 
neg, ex) = 1L eJ./2a. 

A 

Denoting the contribution of the first two peratiza
tions by A(2) (N.B.:A(8) denotes the cumulative con
tribution of the first s peratizations, unlike the 
parallel definition for N(B) and D(S», one finds from 
Eqs. (20) 

A(2)( ) (2ex2/A)Hn(u.a) 
- +0 ex "-' 

1 - (2ex/A)Hn(u.a) 

(2ex2/ A)[ln (gf / A)eJ./2a + y] 

= 1 - (2ex/ A)[ln (gf / A)e)./2a + y] , 

where neg, ex), the optimum-n value, is given by 

neg, ex) = (gf/A)ex-I'/2e)./2a 

(41a) 

+ "higher peratization terms." 

One notes in the following that the higher peratiza
tion terms in neg, ex) do not alter the results. To com
plete the T factor, it is necessary to take for the 
expansion parameter in Eq. (45) g(T(2»2 = g(Tl + 7'2)2. 

Noting from Eq. (44) that (7'(2»2n = 7'~n(1 - 2nA-lflex) 

A(2)( ) An(g, ex) 
- 90 ex "-' 

[An(g, ex)/ex] + 1 - 2n(g, ex)Hn(u.ll) 

= A[~ + ~ e-J./21l - 2 (In g: //2a + y) rl 

(41b) 

In the ex ---+ 0 limit, one recovers from both regular
izations the CC result20 (which they derived only 
for the + regularization) that 

(42) 

which, though not the exact answer, gives the correct 
weak-coupling limit. 

This result also follows from the more elementary 
method of summing the series for Nand D. One 
can readily verify that 

A(2)( ) _ Ko(x) + (In lx + y)Io(x) 
+0 ex - ex , 

[In lx - (A/2ex) + y]Io(x) + Ko(x) 
(43a) 

A
(2)( ) _ -lAxI~(x) 
90 ex - , 

[(A./2ex) - y - In lx]xI~(x) - xK~(x) 
(43b) 

where x = gfA-le)'/2a. In the ex ---+ 0 limit one again 
obtains Eq. (42). 

Next we calculate both the second and third pera
tized scattering lengths for the case with fl > O. Since 
T2(ex) was shown above to diverge as ex ---+ 0, we must 
complete the T factor. Up to the third order of 
peratization, one finds that 

T(S)(ex) = ~ocl'/2//2a(1 _ flex + fl(fl- 2) ex2). (44) 
A A .1.2 

The second peratized scattering length is to be 
computed from the expression (in, say, + regulari
zation) 

(45) 

in second peratization, we may rewrite Eq. (45) in the 
form 

_A~2~(ex) 

_ 2ex2).-l[1 - 2n(g, ex»).-lflex](1 - ).-lflex)Hn(u.a) (46) 

- [1 - 2n(g, ot»).-lflot](1 - 2ex).-lHn (g.a» 

in which the higher-order terms (4nfl2f).3)Hnex4 and 
(4nfll A2)H not2 were added to N nand D n' respectively, 
to complete the T factor. After cancelling the common 
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factor (1 - 2nA~1p,oc), we obtain 

-A~~(oc) 
2OC2A-1(1 - A-lp,oc)Hn(o.~) 

1 - 2OCA-IHn(o.~) 

2oc2 (1 - J.-l,uOC) [In (gt/J.) - !p,lnoc + ().j2oc) + y] 

~;:- 1 - 2ocA-1[ln (gijA) - ift In oc + (A/2oc) + y] 

---+ O. 

In (J regularization we have similarly 

(2) An + p,ocn(1 - 2n) 
-As = 2' 

I' Anoc-1 + 1 + np, - 2nH n - 2ftn 

and after completing the T factor we find 

A (2) 
- 81' 

= oc-1An(1 - 2nA-1ftoc)[1 + (ocjAn) + A-~OC - 2OCA-1H n] 

---+ O. 
~-o 

Thus the second peratized scattering length for p, > 0 
is exactly zero.21 One concludes that the success of 
peratization for the potential VCr) = gr-4eA./r and pre
sumably for its companion V'(r) = r-4(geA./r + g') 
seems to be a fluke and not attributable to the exponen
tial character of the singularity. 

The foregoing result can also be obtained by sum
ming the power series. The nth term of Nand D can be 
found from Eqs. (20) after completion of the T 

factor which yields the appropriate expansion vari
able, given by g(:r(2»2 = 4gA-2oc-l'e)./~(l - A-1OCft)2. 
If we set x/2 = gtf(2), one readily finds (in second 
peratization and, say, + regularization) that 

N+(g, oc) 

2 2 (X/2)2n 
= ~ L -- (1 - ;.-lp,oc)[VI(n + 1) - VI(1)] 

A n!2 

= 2IX2 (1 _ ).-lftoc)[Ko(x) + Io(x)(ln !X + y)], 
). 

D+(g, oc) 

= L (xj2)2n [1 - 2oc;.-1(rp(n + 1) - VI(1»] 
n !2 

= (1 - 2IXrly - 2IX).-1In lx)Io(x) - 2IX,l-lKo(x). 

The second peratized scattering length is given by 

(2J _ lim 2°c2(1 _ P,IX) In tx + y 
A+I' - - ~-o ,l ,l 1 + 2IX).-Iy - 2IX).-I In tx' 

and for ft > 0, this becomes zero. 
The calculation of the third peratized scattering 

length for p, > 0 is similar. We consider + regulariza
tion using the optimum-n method. We note that 

[f(3)(IX)]2n = e 1 _ 2n ftlX + n _ n)./ ~ ( ft2IX2 

(!).2IXl'r A A2 

4ftoc
2 

22ft2 OC
2
) -n-+n--. 

,l2 ,l2 

We find from Eqs. (20) after the completion of the 'T 

factor that 

N(IJ+(2)+(3) 
+1' , 

= [_(3)( )]2n 2oc
2 

H (1 _ p,oc + OC
2
p,2 _ 2IX

2
p,) , 

T OC ,l' n ,l A2 A 

D~~+(2J+(3) = [f(3\IX)]2n( 1 _ 2AIX Hn + 3~? Hn). 

Thus we have 

N(IJ+(2)+(3J[n(g IX) oc] 
(3) +1' ' , 

A+I' = - D~~+(2)+(3)[n(g, IX), oc] 

1 + 2A-1IX[ln (gtjA) - tft In IX + y] 
= -

2A-l[ln(gtjA) - tftlnIX + y] + O(oc) 

---+ O. 

One can also show easily that A~;J = 0 by the opti
mum-n method. Thus we find that for p, > 0 third 
peratization again gives zero for the scattering length. 

We note that if one had not completed the 'T factor 
in these cases, the second and third peratized scattering 
lengths would also have been zero for ft > 0. The 
present example is thus not very instructive as to the 
appropriateness of the procedure. However, it is shown 
by an example in Appendix D that only by completing 
the T factor do higher peratizations give corrections 
to first peratization, as the explicit peratization of the 
Born series shows to be the case.4 

For ft = 0, we calculate higher peratizations by the 
optimum-n method for the + regularization case. We 
note that, in the present instance, we are going beyond 
the exponential peratization which has been employed 
until now. Referring to Eq. (C2) in Appendix C, we 
find in "third" peratization by keeping only the 
leading singular (in IX) part of the coefficient of 
e).(n-I}/~ that A~3) = +2. On the other hand, if we 
keep the complete polynomial (in oc) factor of e).(n-l}/~ 
in N n and D n , we obtain (in "fifth" peratization) by 
the optimum-n method 

A(5J _ tA 
+0 - + tIn (g/,l2) + y 

x {I + (~)[ln (~) - 2 + 2Y]}, (47) 
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which is the first two terms of a convergent expansion22 

of the exact scattering length23 in the neighborhood of 
g = O. This example hints at the interesting idea that 
peratization might prove more successful if one 
peratizes in terms of appropriate "singular units," 
such as orders of eM(/. in the present example, retaining 
the complete polynomial factor which accompanies 
the given order of eM(/..24 This idea is discussed further 
in Sec. VII and will be elaborated in further work. 

The present example is instructive as to the un
soundness of simple-minded peratization as an 
approximation procedure. A glance at the first 
expression on the right of Eq. (41a) or (41b) would 
suggest naively in the spirit of the peratization 
approach that the term I or An/rx, respectively, 
should be the dominant term in the denominator. 
Retaining only this term gives, of course, the first 
peratization result A(1) = O. By recognizing that in 
the summation of the series the n emerges effectively 
as a function of rx through the optimum-n relation, 
neg, rx) = gt).-leJ./2(/., it is clear that the indexing of 
"most singular" terms by their explicit rx dependence 
is a fallacious procedure. In fact,one finds that the 
expression 

H n(u.(f.) ~ In neg) + y ~ A/2rx + tIn (g/).2) 

exactly cancels this "most singular" term in both 
cases and presents an entirely different origin for the 
dominant term to this order of approximation. The 
same has been found for higher-order peratizations 
for f-l = O. Indeed, with this in mind, it would be 
surprising that peratization should work at all, and 
in fact it rarely does, with the CC potentials the only 
ones in the literature which seem to work in some 
sense. 

VII. DISCUSSION 

The peratizations of the exponentially singular 
potentials considered in this article lead to some 
worthwhile observations. Foremost is that the m = 4 
case for which peratization succeeds in some sense is 
exceptional. This success, moreover, has its qualifica
tions. Sensible answers result when one peratizes in 
units of the exponential factor eM" together with its 
complete polynomial factor. Peratization according 
to the degree of the polynomial terms within each 
exponential order does not yield sensible answers. 
For m = 4 the polynomial factors contain a small 
number of terms, and peratization in units of the 
exponential singularity is feasible. An examination of 
the exact solution, in fact, confirms that successive 
peratization in units of the exponential singularity 
provides a converging procedure to the exact answer, 
where successive terms contribute smaller-order 

corrections. For the case m > 4, we do not know 
how to peratize fully to a given order in units of the 
exponential singularity, and perhaps have therefore 
not correspondingly succeeded. This suggests the 
point of view that one may possibly salvage something 
of the peratization philosophy in some problems, if 
one were to collect singularities according to appropri
ate groupings other than the simple-minded ones that 
have been tried. The prognosis for the development 
of a general technique, however, does not seem 
very bright. 

Another qualification of the success of the m = 4 
case is that it yields a converging successive approxi
mation procedure only in the weak coupling limit 
g ~ O. This is not difficult to understand. The scatter
ing length is determined by the whole potential and 
not only by the singularity near r = O. For strong 
coupling, the tail of the repulsive potential plays an 
important role in suppressing approach to the 
singular region, and therefore the effect of the singu
larity on the scattering length should be small. This is 
confirmed in the m = 4 case where the leading term 
in the strong-coupling behavior of the scattering 
length agrees exactly with that of the g/r4 potential. 
It is a general property of potential scattering that the 
leading strong-coupling behavior depends only on the 
behavior of the tailP It should be only in the weak
coupling regime that the singularity near r = 0 
would determine the dominant behavior of the 
scattering length (and the phase shift). Peratization is 
a device for determining the effect of the singularity 
on the scattering, and if it should succeed, it should 
succeed only in the weak-coupling regime. Otherwise 
put, since peratization is only a device for summing 
the Born series, itself a weak-coupling expansion, its 
success, if any, would be expected only in this limit. 
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APPENDIX A: SINGULAR BASIS FUNCTIONS 

The customary peratization procedure entails the 
selection of the leading singular terms in each order of 
the Born series for the amplitude or scattering length. 
The procedure of the present article is to select 
leading singular terms in the numerator and denomi
nator of a ratio which represents the scattering length. 
It is well known and easily demonstrated that these 
two procedures are by no means necessarily equivalent. 
For example, the numerator and denominator could 
both be multiplied by a common g-independent 
factor which expands into a series with stronger 
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singularities than possessed by the original numerator 
and denominator. One would then find that peratiza
tions up to a certain order, or even to all finite orders, 
would yield a ratio of unity. If the numerator and 
denominator were to involve entirely different bases 
of singular functions, then the definition of order of 
peratization would be ambiguous. Similar difficulties 
apply in fact to the scheme of directly peratizing the 
Born series, since the addition of a damped exponen
tial of a very singular function would lead to a zero or 
artificial result in successive peratizations. 

We illustrate the problems that arise from an 
extraneous common factor with a simple example. 
Suppose a function F(g, IX), written as a ratio N(g, IX)/ 
D(g, IX), can be peratized in the sense that first 
peratization gives a first approximation to the exact 
value of the function and higher peratizations give 
correction terms. Suppose that D(g, IX) has the 
singularity expansion 

00 n 
D(g, IX) = ! gn ! cnmemAl~. 

n=O m=O 

The first and second peratized contributions to 
D(g, IX) are respectively given by 

D(l)(g, IX) = ! g"cnnenAja, 

D(2)(g, IX) = ! gnCn.n_leCn-I)Aja. 

Similar expressions hold for N(g, IX). 
We consider the effect of multiplying Nand D by 

the extraneous common factor 

22 00 

evja E(IX) = evja !e,IX', 
r=O 

where the function E(IX) is assumed to be analytic 
about IX = O. Writing 

N(g, IX) = ev/~2E(IX)N(g, IX), 

D(g, IX) = evfa2E(IX)D(g, IX}, 

one finds the first and second peratized contribution.; 
to D(g, IX) to be given by 

j)(1)(g, IX) = 1 gncnneoenA/a+v/a2, 
n 

j)(2)(g, IX) = 1 gncnnellXenJ.f~+v/ex2. 
n 

Again similar expressions hold for N(g, IX). Clearly 
neither second peratization nor any finite number of 
peratizations will lead to any improvement to first 
peratization because of the dominance of the singular 
factor ev/ex'E(IX) over the remaining singularities en;';ex. 

Difficulties of a different nature arise if an extraneous 

common factor is g dependent. Consider N(g, oc) and 

D(g, IX), given by 

N(g, IX) = exp (gev/ex
2
)N(g, IX), 

D(g, IX) = exp (gev/ex')D(g, IX). 

The first and second peratized contributions to 
D(g, IX) become 

_ 0() env/ex' 
15(1)(g, IX) = 1 gn -- coo 

n=O n! 

= coo exp (gev/ex2), 
_ 0() e(n-l)v/ex2 

15(2 )(g, IX) = 1 g" CneA/ex 
n=1 (n - I)! 

= gCll exp (gevfa2+Alex). 

In this case we see that peratization fails completely. 
Despite the arbitrariness of such procedures, one 

can formulate a criterion for when separate peratiza
tion of the numerator and denominator would be 
effectively equivalent to peratization of the ratio 
(Born series). We find that by requiring the denomi
nator function D(g, IX) to be the zero-energy Jost 
function, one eliminates the arbitrariness due to 
extraneous factors in the numerator and denominator 
of the type mentioned above. We express Nn(oc) and 
Dn(IX), the coefficients in the respective coupling 
constant expansions of N(g, IX) and D(g, IX), as a 
finite or infinite expansion in terms of decreasing 
orders of singularity in IX, i.e., 

Nn(lX) = W(IX) 1 anIYnzClX), (AI) 
I 

Dn(lX) = W(IX) 1 bnIYnl(IX), (A2) 
I 

where the I summation begins with I = I and 
Yn.I+1(IX)/Ynz(lX) -4- 0 as IX --+ O. We have assumed in 
these expressions that the same set of singular basis 
functions {Y nl (IX)} appear in both N nand D n' This 
turns out to be the case in practice and, in any event, 
this assumption can be verified easily. Of course one 
may have some vanishing coefficients among the ani 
and bnz . We also note that, because of dimensional 
considerations, an over-alI function of IX, W(IX) , 
usualIy IX itself, appears as a factor in N(g, IX). The 
sth peratization (or the sth order of peratization) 
entails the prescription of retaining in Nn(oc) and Dn(lX) 
the terms of Eqs. (AI) and (A2) from I = I to 1= s. 
Other aspects related to the retention of these terms 
are described later in this appendix and in the body 
of the article. One wishes at this point to be sure that 
the series obtained by formally dividing the sth 
peratized Nand D is the same, to within an error 
term of higher order of peratization, as what would be 
obtained by peratizing the Born series itself. In order 
to insure this, we at least demand that the set of 
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singular basis functions {Ynl(OC)} used in the expansion 
of Nn«(/.) and Dn«(/.) is the same as would occur in an 
appropriate expansion of the Born series in singulari
ties, or more generally that an appropriate nonvanish
ing subset of the singular basis functions occurring in 
N n«(/.) or Dn(oc) also occur in the nth term of the Born 
series. Thus it is conceivable that some singular basis 
functions occurring in Nand D may be absent in the 
Born series. A set of singular basis functions in Nand 
D is said to be spurious if no nonempty subset of these 
terms appears in the corresponding order of the Born 
series.25 For instance, in the example presented above, 
the Born series has singular basis functions of the 
form en)./a, while the functions jj and 15 have the 
spurious singular basis functions of the form ocen)./a+v/a

2 

or env/rr.2ePAla, respectively. If no set of the basis func
tions Ynl(OC) is spurious, then peratization of Nand D 
to a given order s should correspond to peratization 
of the ratio to that order plus an error term of higher 
order. If peratization of the Born series were a valid 
successive approximation procedure, then the presence 
of an error term at higher order ought not detract 
from the efficacy of the procedure. However, it is 
frequently the case that the "error" term is not small, 
but rather is very large and dominates the series. This 
circumstance was discussed in the article and led to the 
prescription of the completion of the 7' factor. 

We now show in two ways that, by choosing 
D(g, IX) to be the zero-energy Jost function, no set of 
spurious basis functions should occur in the expansion 
at Nioc) or Dn(IX). This is done by showing that Nand 
D so chosen can have no common factor and by 
showing more explicitly that the singular basis 
functions in the numerator and denominator functions 
and in the Born series ought to be the same. 

The fact that the denominator function D(g, IX) is 
identical with the zero-energy Jost function permits 
one to rule out cancelling factors in the numerator and 
denominator. Thus the numerator and denominator 
may not possess a common zero. This follows from 
the expression for the function for N(g) in the form2~ 

N(g) = lim.!:. [f(k, g) - f(O, g)] = i :;,a f(k, g)lk~O' 
k .... O k uk 

(A3) 

withf(k, g) the Jost function, andf(O, g) == D(g). In 
general, the point k = 0 need not be a point of 
analyticity of f(k, g), but the limit indicated in Eq. 
(A3) exists if the point k = 0 is approached from the 
lower half-plane.27 A common zero to D(g) and N(g) 
would imply a double zero of f(k, g) at k = 0, 
which one knows for I = 0 partial waves not to be 
possible.26 Nor can N(g) and D(g) have a nonvanishing 

entire function as a common factor, since N(g) and 
D(g) both have exponential order t (see Appendix B), 
and an entire factor which is a function of g would 
raise the exponential order to at least unity. Nor can 
there be a g-independent factor in common since 
D(g) = 1 at g = O. The quantities N(g) and D(g) are 
therefore in their lowest terms. 

We can, however, be somewhat more specific in 
showing why spurious basis functions ought not to 
occur with the choice of the Jost function as the 
denominator function. The following argument is 
restricted to certain classes of potentials of interest. 
These include the potentials eJ./r/rm discussed in the 
present article, as well as a generalization of this class, 
given by gR(r)Jrm, m ~ 4, where R(r) is a "rapidly 
varying function" defined by the property21 

R'(r)JR(r) = IJr~(r) 

and '(r) --+ 0 as r --+ O. An article describing the 
peratization of these potentials is in preparation. 
Another class of potentials is of the form L(r)/rm, 
where L(r) is a tempered slowly varying function. 
The peratization of these potentials is described in 
the following article. A third class consists of the sum 
of two inverse power singular potentials, an example 
of which is discussed in Appendix D. 

The s-wave scattering length A is related to the 
asymptotic form of the zero-energy s-wave physical 
wavefunction by 

1p(r) ~ r + A + 0(1). (A4) 
r .... 00 

The wavefunction 1p(r) satisfies the integral equation28 

"PCr) = r + 2mg 100 

dr'G(r, r')V(r')1p(r') 

= r - 2mg 1: dr'r'V(r')1p(r') 

- 2mgr fa dr'V(r')1p(r'). (AS) 

It can be shown from Newton's article28 that the 
physical wavefunction 1p(r) may be written as the 
quotient 

1p(r) = cp(r)I!(O). (A6) 

Here cp(r) is a regular solution of the zero-energy, s
wave Schrodinger equation satisfying the boundary 
conditions cp(O) = 0 and cp'(O) = I, and fer) is the 
zero-energy s-wave Jost solution of the Schrodinger 
equation satisfying the boundary condition limf(r) = 
1, as r --+ 00. The s-wave Jost function is f(O). cp(r) 



                                                                                                                                    

PERATIZATION OF EXPONENTIALLY SINGULAR POTENTIALS 2053 

and f (r) satisty, respectively, the integral equations28 

cp(r) = r + 2mg fdr'(r - r')V(r')cp(r'), 

fer) = 1 - 2mg Loo dr'(r - r')V(r')f(r'). 

Peratization of the scattering length in terms of 
the Born series directly is effectively accomplished by 
solving Eq. (A5) for 'I/'(r) by iteration and by per
forming the resulting integrations by parts to obtain 
the expansion in singular basis functions. In the 
present paper, however, peratization is performed by 
peratizing numerator and denominator of a ratio 
separately. From Eqs. (A4) and (A6), it is clear that 
this involves obtaining an expansion in g of cp(r) and 
f(r) by iterating their integral equations and by 
integrating by parts to obtain the singularity expan
sion. One sees from the similarity of the integral 
equations for 'I/'(r) and fer) that, by iterating and 
integrating by parts, the singular basis functions which 
appear in 'I/' are included in the basis functions that 
appear in either 91 or f The terms that appear in the 
series for 'I/' are obtained by formally dividing 91 and f 
to obtain the scattering length, according to Eqs. (A4) 
and (A6). It is moreover true that the nth term of the 
Born series is nonvanishing for each n. This is a conse
quence of the fact that the total contribution to the 
nth iteration of 'I/' is a quantity of definite sign, since 
the Green's function G(r, r') in Eq. (AS) is a negative 
quantity. Therefore that contribution cannot vanish. 

We conclude this Appendix by applying the fore
going considerations concerning the presence or 
absence of spurious basis functions to the problems 
which lead to the prescription at the completion of 
the T factor, when studied by the optimum-n method. 
We refer to Eq. (35) of the text,which we write as 

A(2) = lim QI(Ot) 
IX->O PI(Ot) 

1 + [2n(g, Ot)f2(0t)/iiOt)] + Q2(Ot)/QI(0t) 
x . 

1 + [2n(g, Ot)f2(0t)!i\(0t)] + P2(OC)/PI(0t) 
(A7) 

We may regard both the numerator and denominator 
of this expression as the first two contributions of an 
expansion in singularities in IX of the complete 
Nn(f/,IX)(IX) and Dn(f/,IX) (IX). We particularly note that 
the index n is a function of g and IX according to the 
precepts of the optimum-n method. On dividing the 
ratio of Eq. (A7), one finds that the singular basis 
function 2n(g, OC)f2(OC)/f&x.) does not in fact appear in 
the quotient and hence might be regarded as a 

spurious basis function. That this is indeed the case 
can be seen by recalling that this singular function 
arises from the extraneous common factor [7'(Ot)]2n, 
second peratized. It is the purpose of the prescription 
of completing the T factor to remove this factor, as 
discussed in the main portion of the text. 

APPENDIX B: ANALYTIC PROPERTIES OF N(g) 

The determination that D1(g, oc) is entire and of 
exponential order i has been shown by three 
methods,u-13 One method,!! based on the existence 
of an upper bound to the potential in the term of a 
monotonically decreasing £Ii) function, is readily 
adapted to the function N(g, oc) in either regularization. 
This method, however, does not specify the type of 
Dr(g, oc), nor would it for NY(g, oc). Another methodll 

would entail the representability of W(r, oc)ll as an 
absolutely convergent Laplace transform (ACLT). 
The potential I V(r)l! for VCr) of Eq. (1) is so express
ible: 

l glel/2
" 

I V(r) I =--
rim 

= g! Loo dte-,.t(~)(m-2)/~!m_i2;'t)!. (Bl) 

Quite clearly, if W(r)l! is an ACLT, then W(r + oc)l! 
is too, but O(r - oc) I V(r)l! is not. It is shown in Ref, 
11 that if V(r) is nonnegative and V(r}l- has non
negative Laplace weight whose support is bounded 
away from the origin, then the type T is exp.licitly 
given by 

(B2) 

Through a limiting procedure one can extend this 
result to the case where the support of the Laplace 
weight is not bounded away from the origin. Thus 
one can derive Eq. (27) for the + regularized poten
tial, and can adapt the result through minor modifica
tions to apply also to N+(g, oc). While the O-regularized 
potential is not an ACLT, the methods of Ref. 11 do 
go through for the potential O(r - Ot)V(r) to yield the 
validity of Eq. (27) for both D°(g, ex) and N°(g, oc). 
The third methodI3 is based on the WKB solution to 
the scattering differential equation, and the identity 
of D(g) with the Jost function. This method specifies 
the exponential order, as well as the type for D(g). 
Since N(g) is not simply interpretable in terms of 
the solution to the differential equation, one does 
not obtain any direct conclusion concerning N(g). 
One can, however, determine the type of N1(g, IX) 
from that of D1(g, ex) by employing some easily 
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proven inequalities for the coefficients of the Nand D 
power series: 

ocD~(oc) S N~(oc) S (LX) drr2V(r») D~_loc). (B3) 

The type is expressible asI8 

T == lim «2n)! N n)1/(2n). (B4) 
n .... oo 

The inequality [Eq. (B3)] sandwiches T between two 
equal quantities and this known value, which is the 
type D8(g, oc), must therefore be the type of N8(g, oc). 
For N~(oc), one easily verifies the upper bound 

A lower li0und can also be established: 

N~(oc) == 100 

dr l " .J:fl-'drnrl(rl - r2)'" (rn_l - rn) 

x rnV(rl + oc)· .. vern + oc) 

= LX) dXl ••• f'fl-ldXn(X1 - OC)(Xl - x 2) ••• 

x (Xn- 1 - Xn)(Xn - OC)V(Xl) ... V(Xn), 

(B6) 

where the variable changes rj = Xj - oc, j = 1 ... n, 

have been made. From Eq. (B6), one readily finds that 

We have labeled this the "fifth" peratized scattering 
length (though one might quibble about the enumera
tion), since we have retained in toto five orders of 
singular terms. In the third peratized expression, 
A~J one would retain only the Ijrx terms in the factor 
of e(n-l»),/a in the coefficient of gn •. The results of 
these peratizations are presented in Sec. VI. 

In the f.l > 0 case, there are many more singular 
terms in the factor of e"n/a in the coefficient of gn, and 
the calculation of succeeding terms invites greater and 
greater complexity. We presently outline the calcula
tion of the third peratized terms in the Nand D 
series. We denote Ny,..(fl) and Dy,..(fl) generically by 
Gy!"Cfl), dropping indices where confusion is unlikely. 

where 

~n(oc) == 100 
dXl ... 1'l:n-l dXn 

X X1(XI - x2) ... (Xn-l - Xn)V(Xl) ... V(Xn) 

S ~(LX) dxx2V(X») 1°Odx2 " -lXfl-ldXn 

x (X2 - Xa) .•. (Xn- 1 - Xn)Xn V(X2) ... V(Xn). 

(BS) 

Equations (B7) and CBS) provide a lower bound to 
N!(oc), which determines the same type as does the 
upper bound in Eq. (BS) and therefore establisJIes the 
type of N~ (oc). 

APPENDIX C: HIGHER PERATIZATIONS 

The higher-order terms in the expression for the 
scattering length in the m = 4 case might be obtained 
by the techniques of the present article, but one 
would have to work with the parametric integral 
J(fll' •.. ,fln) of Eq. (7) prior to the exponential 
peratization performed in Eq. (II). Instead we shall 
avail ourselves of the explicit form of the scattering 
length23 derived from the known exact wavefunction 
for the + regularized case: 

A 
! KoCg!xo)I~(2g!/A) - Io(g!xo)K~(2g!/A) 

=g +oc 
Ko(g!xo)Io(2gt/A) - Io(g!xo)Ko(2g!/A) . 

(Cl) 

Retention of the terms of order enA/a and e(n-l)),/a in 
the coefficient of gn results in 

(e2) 

Generally, 

Gyo(fl) == Ryo(a; fl)e l
/
d

.P, (C3) 

where the RyoCrt.; (3) can be read off from Eqs. (13a, b) 
and (14a, b). From the relation Eq. (16), 

Gyll({J) = (or· .. a~)Gyo({J), (C4) 

one sees that one can rank the degree of the singular 
(in l/rx) terms in Gy!"({J) according to the number of 
times the derivatives in Eq. (C4) act on the factor 
exp (1/oc ·1 fl) of Eq. (C3). For the D y!", the corre
sponding RY/l contain terms of two different degrees in 
oc, and a fixed number of differentiations of the 
exp (I/oc ·1 (J) factor gives rise to a corresponding 
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mixing of two degrees of singularity in IX. The contri
butions to G 11l from the first three singular orders in IX 

can be expressed by 

For the NYIl case the first, second, and third peratiza
tion, respectively, correspond to the first, second, and 
last two terms in the right of Eq. (C5). For the DYIl 
case, there will be some mixing, and some higher
order terms will be present which one would discard. 
Explicit calculation gives 

D~!)(f3) 
2fllXel/a'1:.p 

= {-nHn + (2 (3)L - K(l - 2(I (3)H) 
IXlln 

- [(I (3)(S + iT) - K] 

+ ifl[(I (3)Q - 2nK + 2(I (3)K2]}p2 
2flrxen )./(f. 

-+ 2 2 n[fln
2 

- (ifl + 2)n + (2n + i)Hn], 
A(A IXIl)nn! 

(C6) 

N~!)(f3) 
2 IX21 / a ·r.p 

= fl {-[(I (3)(S + iT) - K] IX)!n 

+ ifl[(I (3)Q - 2nK + 2(I (3)K 2]}p2 
2flIX2en;./(f. 

-+ 2 2 n[fln
2 

- (tfl + 2)n + 1 + iHn], (C7) 
A(A ocll)nn! 

D~~(f3) 
2el/a·r.p 

= flrx [2L + 4HK - (2S + T) + p,Q + 2flK2)p2 
oclln 

(C8) 

where the arrow denotes the result of the ansatz 
f3i = IL The following notation has been used: 

=I I I 1 1 
i=112i m2i(f31 + ... (31)2(f31 + ... f3m) 

-+ ~ (Hn - iWn + iH;). 

APPENDIX D: PERATIZATION OF THE 

POTENTIAL V(r) = g(A + ~) 

In this appendix we outline the peratization pro
cedure employed in this article for the potential 

(D1) 

This potential is exactly solvable at zero energy29 and 
hence can be used to calculate the peratized scattering 
lengths to all orders and to compare these results 
with the exact scattering length. Gale4 has studied 
the peratization of this potential by peratizing the 
Born series directly and has found th,at first peratiza
tion gives the exact scattering length for the potential 



                                                                                                                                    

2056 W. M. FRANK AND D. J. LAND 

gr5 , while second peratization gives a correction term 
which is linear in cpo 

One can readily find that the exact scattering length 
for the + regularized potential VCr + IX) is given by 

A(g, IX) = -N(g, IX)/D(g, IX), (D2) 

D(g,lX) = g-trrlX{Bi [gt(! + CP)JAi(gtCP) 

- Ai (gt(; + cp) ] Bi (gtcp)}, (D3a) 

N(g,lX) = -rrlX{Bi [gt(! + cp)] Ai' (gtcp) 

- Ai [gt(; + cp) ] Bi' (gtcp)} - IXD(g, IX). 

(D3b) 

Here D(g, IX) is the Jost function and Ai (x) and Bi (x) 
are the Airy functions having the asymptotic behavior 
for large z, trr-!z-! exp (-izi), and rr-!z-! exp (izi), 
respectively.30 In the IX ~ 0 limit the scattering length 
for the potential VCr) becomes 

A(g) = gt Ai' (g;cp) . (D4) 
Ai (g cp) 

Using the standard expansions for the Airy func
tions,30 one finds 

00 

N(g, IX) = ~ gnN nCll(), (D5a) 
n=1 

<Xl 

D(g, IX) = ~ gn Dn(lX) , (D5b) 
n=O 

2rr[1 (1 + IXCP)i

J
2n Nn(lX) = -IX- - --

3i 3 IX 

x~ -- ----n ( IXcp )3m 1 

m=O 1 + IXcp m! (n - m)! 

X [(3m + 1 +IXCP)( 1 
rem + i)r(n - m + t) 

- rem + t)r;n - m + i») 
( 

IXCP)2 3(n - m) ] 
+ 1 + IXcp rem + t)r(n - m +!) , 

(D6a) 

X i (_IXCP )3m __ 
m=O 1+ll(cp m!(n-m)! 

X (1 + Il(CP) 1 
. rem + i)r(n - m + t) 

_ IXcp 1 ). (D6b) 
rem + t)r(n - m + i) 

We proceed to calculate the peratized scattering 
lengths by the optimum-n method. The quantity T(IX) 
is given by 

100 (1 cp)i 2[(1 + IXCP)i i] T(IX) = a dr ;:s +;:; = 3 -IX- - cp , (D7) 

and hence r(lX) is 
3 

r(lX) = ~c : IXCP)". (D8) 

The appropriate expansion parameter for application 
of the optimum-n method and for peratization ought 
to be gr2(1X) and Eqs. (D6a, b) confirms this to be the 
case, in accordance with Eqs. (28). One readily finds 
from Eqs. (D6a, b) that, as a function of gr2(1X), the 
exponential order of N(g, IX) and D(g, IX) is ! and the 
type is unity. Hence the optimum-n value, obtained 
from Eq. (25), is given by 

neg, IX) = 19!1X-t (D9) 

We note that the r function satisfies the relations31 

(2n)! = rr- i22nr(n + !)n!, 

and, for large n, 

r(n + lX)jr(n + b) ~ na
-

b
• 

With these relations and the optimum-n value neg, IX) 
of Eq. (D9), one finds that, in the limit of small IX, 
Nn(g.a) and Dn(g.a) may be written as 

r(IX)2n 2rr! t t 4-1 
Nn(g.a)(IX) ~ -- --i g [3 r(3)] 

(2n)! (3n) 

x (1 - 1. ret) (g!cp)2 + l(gtcp)3 
3! ret) 

- -- g cp) + ... 1 ret) (t 5 ) 

3t rei) 

= _ r(IX)2n 2rr! gtAi, (i ) 
(2n)! (3n)i cp , 

-( )2n 2 ! 
T IX rr [*r(2 -1 Dn(g.a)(IX) ~ -- --i 3 3)] 
(2n)! (3n) 

x (1 _ 1. rei) gl +.!. rm ( 1 )3 
3* ret) cp 32 r(~-) g cp 

_ I.§. rei) (g!rp)4 + ... ) 
3

3 rC-D 
r(IX)2n 2rr! . t 

= (2n)! (3n)i Al (g cp). 

Hence, by taking the ratio of Nand D, the exact 
scattering length of Eq. (D4) is reproduced. It is clear, 
in this case, that s peratizations give the first s terms 



                                                                                                                                    

PERA TIZA TION OF EXPONENTIALLY SINGULAR POTENTIALS 2057 

of a Taylor-series expansion of the scattering length 
in cp about cp = O. It is also clear that the completion 
of the 'T factor goes through automatically in this 
example, since the quantity -f2(OC) appears at the outset 
as a factor in Nn(oc) and Dn(oc). 

It is instructive to calculate peratization for this 
example without the completion of the 'T factor. We 
do this in second peratization. Noting that 

[(
1 + oc )3n](Z) 1 
~ = oc3n [1 + 3noccp], 

one finds from Eqs. (D6a, b), the first and second 
peratized contributions to NnCoc) and Dn(oc) to be 

N~>+(2'(OC) = -oc 27T_1_ 
3! 3Znoc3n 

X ([1 + occp(3n + 1)] r(tW;n + t) 

D~)+(Z)(oc) = 27T_l_ 
31 3znoc3n 

- r(t)r~n + i))' 

X ([1 + occp(3n + 1)] rmr:n + t) 
1 ' 

- ocrp r(t)f(n + i») 
The first peratized scattering length, evaluated by the 
optimum-n method, becomes 

A(l) = lim IX rm neg, IX} = g! rm = g! Ai' (0) 
(%->0 ret) 31 ret) Ai (0) 

In obtaining the second peratized scattering length, 
one readily notes that the term 3ocrpn(g, oc), which 
syperficially is less singular than unity, is actually 
more singular when the oc dependence of neg, IX) is 
considered and dominates all other terms. The 
coefficients of this term, however, are the same as 
those which contributed to the first peratized scattering 
length and hence we find that A(Z) = A(I) without 
completion of the 'T factor. 

* A preliminary report of this work was presented at the 1968 
Chicago Meeting of the American Physical Society. Abstract GH-13. 

t Part of this work was performed while a National Research 
Council Postdoctoral Research Associate. 
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First and second peratizations are performed for a wide class of repulsive potentials with singular be
havior near r = 0 of the form L(r),-m (m > 3), where L(r) is "logarithmically singular" at the origin. 
More precisely, when L(r) is of the class of "slowly varying functions," i.e., functions such that 
rL'(r)/L(r) -+ 0 as r -- 0, first peratization gives a (generally infinite) constant multiple of the result for 
the ,-m potential. Second peratization for a wide class of slowly varying function offers no substantive 
improvement. 

I. INTRODUCTION 

Many of the model calculations of the peratization 
procedure in scattering theory have dealt with log
arithmically singular potentials,1.2 i.e., potentials of 
the form (g is a coupling constant) 

gV(r) = gL(r)/rm, (1) 

with L(r) some power of In r. (In some calculations,3 
the potential is a sum of two such terms, but we do not 
consider this case.) These calculations have all found 
a divergent result in first peratization. These results 
have been derived in a more general way for a larger 
class oflogarithmically singular potential by a number 
of authors.2 In the present article, the first and second 
peratizations are carried out for the class of potentials 
of the form in Eq. (1), where L(r) is a "slowly varying 
function" which we define subsequently. Second pera
tization is found not to change the results of the first 
peratization significantly. Our results go beyond those 
of previous authors in the inclusion of second pera
tization as well as in the broadness of the results, and 
in the simplicity of the derivation for the first pera
tization. In Sec. II, we present some preliminaries. In 
Sec. III, we calculate the first peratization for the two 
regularizations, the "0 regularization" 

Veer, IX) = V(r)()(r - IX) (2) 

[O(x) is the sign function which is 0 for negative x, 
unity otherwise], and the "+ regularization" 

(3) 

is defined by the condition 

. L(r) L(r) (1) 1 (4) 
!~~r L(r) = 0 or L(r) = 0; = rA(r) , 

where IA(O)I = 00. This class offunctionshas also been 
considered by Spector2 and Gale.2 It is assumed, of 
course, that the behavior for large r is such as to 
correspond to a finite scattering length. The significant 
property of the svf is the relation 

which follows from 

lim L(lXp) = 1, 
,,--0 L( IX) 

min A-1(r) In p ~ rap dx L(x) = In (L(IXP») 
a<Sr<Sap 1 L(x) L(IX) 

(5) 

~ max ,1-\r) In p. (6) 
a<Sr<Sap 

Since A-1(r) -+ 0 as r -+ 0, both bounds in Eq. (6) give 
zero in the limit IX -+ 0, which proves Eq. (5). We can, 
in fact, deduce the stronger statement from Eq. (6): 

---1 0-L(IXp) ( In p) 
L(a) - + A(ocO) , 

(7) 

where 1 ~ 0 ~ p, which may, in fact, be a function of 
p. The slowly varying functions include functions such 
as InP (1/r), In In (I/r), (l - In r)-I, erE (with € > 0), 
etc. It is easy to show that, if L(r) and I(r) are svf, then 
so are L[/(r)] and I[L(r)]. Moreover, if L(r) is an svf 
and L(O) = a (which may include the improper value 
(0), and if 

a /F'(a)/F(a)/ < 00, 

interpreted as a limit when the quantities assume 
improper values, then F[L(r)] is also an svf. 

We are also interested in the subclass of svf, for 
which the A(r) of Eq. (4) is again an svf. This class 
includes functions of the form F(ln r-1), where 

This article concerns itself with singular potentials F'(x)/F(x) -+ 0 as x -+ 00, and, thus, is quite general. 
of the form in Eq. (1), where L(r) is a "slowly varying We call this class the class of "tempered slowly varying 
function" (svf)4 in the neighborhood of r = O. This functions" (tsvO. In the notation of Eq. (4) we thus 

In Sec. IV, we calculate the second-peratized contri
bution and show that it does not make any substantive 
change in the results of first peratization. 

II. SOME PRELIMINARIES 

2058 
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require that 

lim I.:(r) = _1_, where A'(r) = _1_ , 
r-+O L(r) rA(r) A(r) rp,(r) 

(8) 

and 1p,(O) I = 00. We find from Eq. (6), applying Eq. (7) to Jt(ex.p) as an svf, that 

L(ex.p) = 1 + In P [1 + 0(1)], 
L(ex.) Jt(ex.) 

(9) 

providing a second term in the singularity expansion of L(ex.p). 
The negative of the scattering length A is expressible5 as the ratio of two power series 

The ()- and + regularized scattering lengths are de
noted by +A8(g, ex.) and +A+(g, ex.), respectively. In 
an obvious notation, we write 

00 00 

NY(g, ex.) == L gnN~(ex.), DY(g, ex.) == L gnD~(ex.), (11) 
n=l n=O 

with y = () or +. For the pure power potential 
V(r) = gr-m, we write 

D!.m(ex.) 

roo rpn- 1 

= ex.-(m-2)n J1 dPl" 'Jl dPn 

x (PI - P2) ... (Pn-1 - Pn)Pn 

(PI' .. Pn)m 

(12a) 

where the integration variable substitutions r; = ex.Pi' 
j = 1, ... ,n, have been made. Similarly, one can 
write 

N8 (ex.) = ex.n8 /ex.(m-2)n (12b) n,m n,m , 

where the d!.m and n!.m are known (see the Appendix) 
and are independent of ex.. One finds, by identical con
siderations, that 

D+ (ex.) = d+ /ex.(m-2)n n,m n.m , 

N+ (ex.) = ex.n+ /ex.(m-2)n 
13 , m n,m , 

(13a) 

(13b) 

with d~.m and n~.m defined in terms ofn-fold integrals. 
Therefore, one finds (in an obvious notation) that 

00 

ex. L (gex.(2-m»)nn~.m 
_ A!n(g, ex.) = ..:..:n_=1=--____ _ N?,.(g, ex.) 

I (goc(2-m»"d~.m D?,.(g, oc) 
n=O 

(14) 

(10) 

One knows from general considerations6 or from 
specific evaluation' that the limiting value, as ex. -- 0 
of the ratio in Eq. (14), is in fact the (negative of the) 
scattering length for the potential VCr) = gr-m, which 
is7 

-Am(g) = (gp2Y[r(1 - p)jr(1 + p)] 

= _(gp2)'[r( -p)jr(v)], (15) 

where v = (m - 2)-1. The limit as ex. -- 0 in Eq. (14) 
can also be written as 

where the substitution x == gex.-1/
V has been made. 

III. FIRST PERATIZATION 

We appeal to the discussion in the preceding articleS 
to justify the calculation of the sth peratization of 
AY(g) as the ratio of the sth peratized NY(g, ex.) and 
DY(g, ex.) in the oc -- 0 limit. The sth-peratized scatter
ing length for the class of potentials of the form of 
Eq. (1) is denoted by A~~ (g). Now for these potentials, 
with L(r) an svf, 

D!(oc) = roo dr
l 

••• rn
-

1 dr n L(rl ) ••• L(r n) 
J« J« (r1 ' •• rn)m 

X (rl - r2)'" (rn- l - rn)rn 

= _1_ roo dPI ... rPh
-

1 dpn L(ex.Pl) ... L(ex.pn) 
ex.(m-2)nJ1 J1 (PI' .. Pn)m 

x (PI - P2) ... (Pn-l - Pn)Pn. (17) 

The first peratization of this quantity (which we denote 
by a bar over the symbol) may be obtained by noting 
that in the limit as ex. -- 0, the leading singular be
havior is found by employing Eq. (5): 

b!(ex.) = {[L(oc)r/ex.(m-2)n}d~.m' (18) 
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Equation (18) remains valid just as well for l>~{oc) and 
N~(a.). We note that n:(a.) in Eq. (15) is of the same 
form as D:.m(a.) of Eq. (12a) with the additional 
factor [L(a.)]n, which can be viewed as effectively re
placing the coupling constant gin D8(g, a.) by gL(a.). 
The same holds for D+(g, oc) and NY(g, oc). We 
immediately conclude from Eq. (14) that, for y = 
both 0 and +, 

A~~(g) = - [gL(0)v2]V[r(1 - v);r(1 + v)] 

= IJ(O)Am(g). (19) 

Thus, if L(O) = 00, the first peratization produces a 
divergent result and can be said to fail. If L(O) = 0 or 
a finite number, one might claim that first peratization 
has in some sense succeeded. In the next section, we 
study the second peratization and show that it does not 
change substantively the results of ' the first peratiza
tion, and so does not produce any better approxima
tion. 

IV. SECOND PERATIZATION 

We perform the second peratization of potentials 
of the form of Eq. (1), with L(r) a tsvf. Second 
peratization is calculated from the second tepn on the 
right side of Eq. (9). We now calculate l)~(oc) and 

N~(oc), the second peratization contributions to D~(oc) 
and N~ (oc), respectively, from this term. If one retains 
the two leading singular contributions derived from 
the substitution of Eq. (9) into Eq. (17), one finds 

- [L(ocW i oo iPn
-

1 

1)8(oc) = dP1 . . . dPn 
n A(OC)OC(m-2)n 1 1 

(~1In Pi)(P1 - P2)' .. (Pn-1 - Pn)Pn 
X 

(P1' .. Pn)m 

[L(ocW iJd~,m 
A(OC)oc(m-2)n iJm ' 

(20) 

and completely parallel expressions for Dt(oc) and 

N~(oc). From the expression [see Eq. (AS) of the 
Appendix] 

d:,m = [r(1 + v)v2n- 1]/[n! r(n + v)] 

= [r(v)v2n]/[n! r(n + v)], (21) 

with v == (m - 2)-1, one finds 

D~(a.) = [v2/A(oc)][2n/v + tp(v) - tp(n + v)Jl>~(oc), 
(22 a) 

where tp(z) is the logarithmic derivative of the r 
function. From Eqs. (AI), (AS), (A 13) , and (AIS); 
one similarly finds 

N~(oc) = [V
2/A(oc)][2n/v - 1p( -v) 

+ tp(n + 1 - v)]N~(a.), 

D~(oc) = [v2/A(oc)][2n/v + 1p(1 + v) 

- tp(n + 1 + v)]l>t(oc), 

(22b) 

(22c) 

Nt(oc) = - - + [tp(l + v) - tp(n + 1 + v)] = v
2 

[2n 
A(OC) v 

X (1 _ r(1 - v) r(n + 1 + V»)-1 
r(l + v) r(n + 1 - v) 

- [tp(l - v) - 1p(n + 1 - v)] 

X (1 _ r(1 + v) r(n + 1 - V»)-1] Nt(oc). 
r(1 - v) r(n + 1 + v) 

(22d) 

We now calculate the second-peratized scattering 
length by the optimum-n method and according to the 
prescription of the completion of the 7 factor. Both of 
these notions have been described in detail in the 
preceding paper.s The quantity 7(a.) is given by 

LoodrV!(r) 

and 7(oc), which is the oc-dependent part of 7(OC) and 
whose significance was discussed in the preceding 
article, is given to second peratization for the poten
tials of Eq. (1) by 

7(2)(oc) = ;\(oc) + 72(oc) = [L!(oc)/oc1
/
2V ]2v[1 + v/A(a.)]. 

Since 72( oc) becomes infinite in the oc -+ 0 limit, it is 
necessary to complete the 7 factor. The negative of the 
O-regularized scattering length in second peratization 
is to be obtained by the optimum-n method from the 
expression 

(2)( ) _ 1 + [v/A(oc)][2n(g, oc) - '1np( -v) + vtp(n(g, ex) + 1 - v)] N!(g,~ioc) 
-Aom g, ex - ---o~~ 

1 + [v/A(a.)][2n(g, a.) + vtp{v) - vtp(n(g, ex) + v)] Dn(g,~)(ex) 
(23) 

and, upon completion of the 7 factor, one finds 
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The optimum-n value neg, ~) for the present class of 
potentials is given bt 

neg, at) = vglLl(~)/~l/2v. (25) 

Recalling that, for large n, 1p(n + a) has the behavior 
1p(n + a) R:! In n, we find that the second-peratized 
scattering length A~~(g) is given by the expression 

A (2)( ) _ [2L(0)]V r( -'II) I' 1 - tv In (~)/A(~) - 9mg --gv 1m . 
rev) a-+O 1 + !vln (~)/A(~) 

(26) 

Here, we have used the result, which is essentially a 
calculation of the scattering length for the potential 
gr-m by the optimum-n method, that 

. N!(g.a)(~) neg, ~)r(n(g, ~) + 'II) r( -'II) 
hm R:! -~ --
a-+O D!(g,a)(~) r(n(g, ~) + 1 - 'II) rev) 

2v r( -'II) 
R:! -~n(g, ~) rev) 

~ - [gv2L(0) r r( - 'II) = - E(O)Am . 
rev) 

Similar results hold for the + regularized potential. 
It thus appears from Eq. (26) that the second

peratized scattering length can differ from the first 
peratized scattering length at most by a constant. 
Whether the constant is unity or not depends on the 
function A(~). There are three distinct situations. 
Since 1p(x) "" In x for large x, we see from the behavior 
of neg, ~) of Eq. (25) that 1p(n(g, ~» behaves as In ~-l 
for small ~. Thus, Eq. (26) dictates the following be
haviors of the second-peratized scattering length with 
respect to the first-peratized scattering length as a 
function of A(~): 

r In ~ A(2) 1m-
a-+O A(~) ym' 

0 +A(l) ym, (27a) 

(J-l const A(1) ym' (27b) 

00 _A(1) ym' (27c) 

Functions A(~), such that In (~)/A(~) -4- 0 as ~ -4- 0, 
correspond, for example, to tsvf L(r) of the form 
a + b In-l(l/r), which are constant at r = 0, as well 
as to functions like In In (l/r), which are very slowly 
varying at the origin. The present peratization scheme 
gives no improvement in second peratization for these 
potentials. 

Functions A(~) = (J-lln ~ correspond to the inter
esting and frequently studied class L(r) = Infl (I/r), 
(J > O. We term this class of tsvf the purely Iogarith-

mic class. To evaluate the constant in Eq. (27b), we 
proceed according to the notion that the quantity 
relevant in the ~ -4- 0 limit, namely, 

1 + [v2/A(~)]1p(n + 1 - 'II) 1 - !v In (~)/A(~) 

1 - [v2/A(~)]1p(n + 'II) R:! 1 + tv In (~)/A(~) , 
(28) 

would effectively appear in a Born series with positive 
powers of A-l(~) as the singular basis functions. We 
wish to retain in the ratio (Born series) only the con
tribution up to O(A-l(~». By expanding the ratio in 
Eq. (28), we find for the purely logarithmic potentials 
VCr) = gr-m Infl (l/r), for which A(~) is given by 
(J-lln ~, that 

A(2) = A(o(1 - v/(J) ym ym • 

For the potential VCr) = gr-4 In (l/r), studied by Wul 

in second peratization, we have 

A(2) = lA(l) 
y4 "2" y4' 

a result in agreement with that obtained after a lengthy 
calculation by Wu. 

The third class of functions A(~), which become in
finite more slowly than In ~, corresponds, for example, 
to the class of tsvf L(r) = exp [A InP (1/r)], where 
o < p < 1. These tsvf become infinite at r = 0 faster 
than Infl (l/r). Second peratization of these potentials, 
when evaluated as a ratio, gives straightforwardly the 
negative at the first-peratized length. Thus, A~~ is a 
positive quantity for all values of g which is not 
reasonable for a potential which is purely repulsive at 
the origin. If the argument used above in obtaining 
the Born series is invoked now, the factor 

1p(n(g, ~»A-l(~) 

dominates in the ratio and the second-peratized 
scattering length would appear to diverge faster than 
the first as ~ -4- O. We conjecture that this is the case, 
although further study is needed to resolve this ques
tion unambiguously. In any event, it hardly seems 
likely that second peratization gives any improve
ment to first peratization which, we recall, is itself 
infinite whenever L(O) is. 

The results of the present calculation may be said 
to demonstrate that second peratization "does not 
work" for the class of potentials considered, in the 
sense that it yields no improvement over the first 
peratized results, even when these results are finite (as 
when I L(O) I < (0). Therefore, the present examples 
clearly erode one's confidence in the straightforward 
application of peratization as a calculational technique. 



                                                                                                                                    

2062 W. M. FRANK AND D. J. LAND 

APPENDIX: NAND D FOR THE () AND + 
REGULARIZATIONS 

The quantities D~(IX) and N~(IX), y = e, +, have 
been defined in Eq. (11). For potentials of the form 

VCr) = g/rm , 

with m > 3, thequantitiesd~.mandn~.maredefinedby 

DY (IX) == (1/IX(m-2)n)dY 
n,m n,m' 

NY (IX) == (1X/IX(m-2)n)nY 
n,m n,m' 

as in Eqs. (12) and (13). In Eq. (12a), we see that 

d9 =100 dp .. ·ioodp ... n,m n 1 
1 P2 

(PI - P2) ... (Pn-l - Pn)Pn 

(PI' .. Pn)m 

(Ala) 

(Alb) 

(A2) 

Through the succession of transformations Pi = 

Pi+l~i,j = 1,'" ,n - 1, one finds 

d~.m = fJ(", + 2)fJ(2", + 2) ... fJ[(n - 1)", + 2] 

x 100 
dPnp-;;,n/l-\ (A3) 

where", = m - 2 = V-I and 

fJ(m) == 100 
d;(; - l)~-m = [em - l)(m - 2W\ 

(A4) 

and therefore 

d9 = ",r(l + ",-1) 

n,m ",2nn ! I'(n + ",-1) 

v2nr(v) 

n! r(n + V) 
(AS) 

Similarly, one straightforwardly finds 

8 ",r(1 - ",-1) 
n = n,m ",2n(n _ I)! I'(n + 1 - ",-1) 

_v2nr( -V) 

(n - I)! I'(n + 1 - v) 
(A6) 

The corresponding quantities for the + regularized 
case are evaluated with the aid of the following easily 
proven identities: 

(A7) 

where 

~n == 100 
dXn •.• roo dX1(X1 - x2) ••• 

IX JX2 
(X n- 1 - x n)V(x1) ••. V(x n ), (AS) 

and10 

where 

Lin == fOO dXn ... JOO dXIXl(Xl - X2) ... 
IX "'2 

(Xn- 1 - Xn) V(Xl) •.. V(Xn). (A10) 

For the power case VCr) = ,-m, we can write 

~ = -n(m-2)-lt A = -n(m-2)i 
n (X n,m, un - ex. n,m' (All) 

which explicitly exhibits the IX dependence. One finds 
from the technique used earlier that 

t =100 dp .. . i OOdp (PI - P2) ... (Pn-l - Pn) 
n,m n 1 

1 P2 (PI ... Pn)m 

V2nr(V) 
(A12) 

(n - I)! r(n + 1 + v) , 
so that 

d-;;,m = d~,m - tn•m 
= [v2nr(1 + v)]/[n! r(n + 1 + v)]. (A13) 

Similarly, 

In,m = - [v2nr( -v)]/[n! r(n - v)], 
so that 

+ 9 d+ 1 nn,m = nn,m - n,m - n,m 

(A14) 

v2n( r(l + v) r(1 - v) ') 
= - -;;T r(n + 1 + v) - r(n + 1 - v) , 

(A1S) 

and D~(IX) and N:(IX) are determined through Eqs. 
(AI). 

* A preliminary account of this work was presented at the winter 
1968 Chicago meeting of the American Physical Society [Bull. Am. 
Phys. Soc .• Ser. 11 13, 107 (1968)]. Abstract GH-13. 

t Part of this work was performed while a National Research 
Council Postdoctoral Research Fellow. 
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The spherical model of the lattice gas of Gersch and Berlin is studied by making an integral approxima
tion to the Fourier coefficients of the interaction potential. A phase transition is found in one dimension 
for potentials _gr-a. with 1 < ex < 2. A necessary condition which a potential must satisfy to allow a 1-
dimensional phase transition is given. General expressions are derived for specific heat C. and isothermal 
compressibility KT . Discontinuities are found in the thermodynamic properties at the transition for ex less 
than t times the number of dimensions. Asymptotic expansions are given for C. and K'l' near the 
critical point. 

1. INTRODUCTION 

The spherical model of a ferromagnet introduced by 
Berlin and Kac1 exhibits a phase transition which is 
mathematically due to the "sticking" of the saddle 
point in a steepest-descents integration in the evalua
tion of the partition function. This result extends at 
once to the spherical model of a lattice gas2 giving a 
phase transition in three dimensions (but not in one or 
two dimensions) for short-range interactions. Gersh3 

and Strecker4 obtained a transition in the spherical 
model in one dimension by using the interaction po
tential -gye-yr and taking the limit as y ->- 0 at an 
appropriate point in the calculation. We show in the 
following that a transition due to a "sticking" saddle 
point occurs in one dimension in the spherical lattice 
gas for potentials _g,-a. with 1 < IX < 2. In the 
transition region, the isotherms are flat. We also show 
that a necessary condition for a potential to yield a 
I-dimensional transition in the model is for the large-, 
behavior to be between ,-1 and ,-2. (Note that po
tentials such as ,-2 In , satisfy this requirement.S) This 
transition in the spherical lattice gas for potentials 
_g,-a. corresponds to the transition found by Joyce6 

the spherical model yields a finite discontinuity at the 
transition when the potential is _gra. and 1 < IX < ! 
in the I-dimensional case. Further, the general form of 
the isothermal compressibility diverges at the critical 
point in all cases, but a finite value is retained when 
approaching the transition along a value T ¥= To, for 
1 < IX < t. Similar results are found in two and three 
dimensions. 

In Sec. 2 below, we review, following the works of 
Berlin, Kac, and Gersch,1-3 the derivation of the 
thermodynamics of the spherical lattice gas in one 
dimension. In Sec. 3, the conditions which must be 
satisfied for a phase transition to occur in one dimen
sion are discussed, and the potential -gra. is shown to 
provide a transition. In Sec. 4, the. thermodynamic 
properties for the model, generalized to n dimensions, 
are derived and examined qualitatively at the transi
tion; while, in Sec. 5, the properties are given asymp
totic expansions on approach to the transition. 
Finally, the results are discussed briefly in Sec. 6. 

2. THE SPHERICAL MODEL OF THE LATTICE 
GAS IN ONE DIMENSION 

in the spherical model of the ferromagnetfor potentials The basis of the I-dimensional lattice gas is a 
of the same type, just as the transition found by I-dimensional lattice of K sites numbered 1, 2, ... , 
Gersch and Berlin2 in the spherical lattice gas corre- j,"', K with occupation numbers nj = 0, 1 assigned 
sponds to the transition in the spherical ferromagnet to each site. The distance between sites is fl, which 
of Berlin and Kac.1 gives a I-dimensional volume V = 5K. The total 

The critical properties of a model showing a trans i- number of particles is N =!; n;, which gives a 
tionareof interest due to the observations of apparent specific volume v = V/N = bK/N. For convenience 
logarithmic singularities in the specific heats at con- in calculation, the lattice is assumed to be topologi
stant volume of argon and oxygen7 •8 at the critical cally deformed into a ring such that sites I and K + I 
point. Yang and y ang9 noted that the 2-dimensional are equivalent. To obtain a phase transition, it is 
lattice gas has such a singularity in Cv , while the necessary to let the number of particles and sites 
spherical lattice gas in three dimensions shows no such become infinite.10 This limit is taken in such a way as 
singularity. We show that the general form of Cv for to leave the ratio K/N = v/b constant. 

2063 
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For an imperfect gas in one dimension, the partition 
function is 

QN = (21Tm/h2(3)!NZN' (2.1) 

with the configurational partition function for the 
la ttice gas givell by 

- K 

ZN = <5
N Iexp (-i(3 I uiknink), 

{nil J,k=l 

In; = N, nj = 0,1, (2.2) 

and where Uik is the interaction potential between sites 
j and k. 

Next, make a change of variables to xi = 2nJ - 1 
to obtain a form for ZN like that for the Ising model. 
Now 

K 

Xi = ±1 and IXi = 2N - K. 
i=1 

The periodicity imposed on the lattice requires Uii = 
UHI,i+! , where addition of indices is modulo K. Hence, 

ZN = <5Ne-tN{JV, I exp (16(3 I Uj/(X j - XZ)2) , (2.3) 
(Xi) j, / 

with 
K 

VI = IUli · 
i=I 

The spherical model of the I-dimensional lattice gas 
is obtained by replacing the summation over {Xi} 
configurations with x; restricted to ± 1 in (2.3) by 
integration over the Xj: 

subject to the constraints 

K 

Ix; = 2N - K and Ix~ = K. 
i=l j=l 

The latter constraint limits integration to the surface 
of a K-dimensional sphere and is the origin of the 
name "spherical model." 1 The normalization factor A 
is required on changing from a sum to an integral, and 
can be a function of K only. The choice 

In A = (Nv/2{) In (2/7Te) (2.4) 

is made to obtain the same ZN as the ideal lattice gas 
with Upe = 0 and N =!K. The partition function 
now has the form 

ZN = AllNe-iN{Jv, 1: dx1 " ·1: dXK 

'E,a:i=2N-K. 'E,a:/=K 

X exp U6(3 I Uiz{X i - xl')· 

The properties of the interaction Ujk = Uk} and 
Upe = Uj+m,k+m allow the matrix {Uik} to be diag-

onalized by the orthogonal transformation 

with 

K 

Yi = ItiiXi' 
;=1 

K K 
"" 2 _ "" 2 kY1 - kXj> 
j=l 1=1 

tik = K-!{cos [(21TjK)(j - l)(k - 1)] 

+ sin [(21T/K)(j - l)(k - 1)J). (2.5) 

The eigenvalues of Uii are 

!(K+l) (2 ) 
Vi = 2 I U1pcos ...!! (j - 1)(p - 1) . 

p=2 K 
(2.6) 

The restriction on the integral in Z N of 

K 

Ix; = 2N - K becomes Yl = K-l(2N - K), 
i=1 

and 

~1X; = K becomes i~/~ = 4N( 1 -~) == R2. 

With these substitutions, the partition function be
comes 

ZN = AllNe-tN{Jvl1: dyz" ·1: dYK 

'E,:-2'11!'=R
2 

x exp (t(3i~2(V1 - Vi)Y~)' (2.7) 

Next, the restriction on the integral is removed by 
inserting 

in the integrand. To allow integration on the Yi' the 
() function is represented by the complex integral 

( (K )t) R lSo+;oo ( K) 
<5 R - I y~ = - ,dS exp S R2 - I Y; . 

2 11T SO-.OO 2 

Thus, interchanging orders of integration, one obtains 

ZN = ~: oNe-lNPVlf:'~:~oo dS?R2L:dYz" ·f: dYK 

x exp (- f [S + t(3(Vj - Vl)]Y~) 
,=2 

AR 1 lSOHOO '\ = -.- llNe-... N{JYI dS(eSR ) 
11T So-ia:> 

K 

X II {1Tt[S + t(3(v; - v1Wt }, 
;=2 

where So is a sufficiently large positive number to make 
each Yi integral converge. 
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The next step is to evaluate the complex integral on 
S. To begin, we write 
K 

IT {[S + i{J(v; - Vl)ri } 
;=2 

and let 
K 

G(S) = lim K-1 I In [S + t{J(vi - VI)] 
K-+oo 2 

= - dw In {S + t{J[v(w) - YeO)]}, (2.8) 1 L2

" 

27T 0 

with (2.6) replaced by 
i(K+l) 

yew) - yeO) = 2 I Uh>{cos [w(p - 1)] - 1} (2.9) 
1'=2 

on change to the continuous variable 

w = (27T/K)(j - I). 

Now G(S) has branch points at values S = 
-t{J(vi - VI); therefore, in order to make G(S) an 
analytic function, we place a branch cut along the real 
axis from S = -StoS = -00, for Sthe minimum of 
t,8[v(w) - yeO)] on 0 S w < 27T. (Thus, S SO.) Fur
ther, the singular nature of G(S) is contained in the 
terms In (S + S); hence, we remove these from the 
summation before letting K -+ 00. Since the vi are 
doubly degenerate, there are two such terms. Sub
stitution in Z N gives 

ZN = C(27TirIJ dS(S + S)-leNg(S), 

where 
g(S) = 4[1 - (b/v)]S - [v/(2t5)]G(S), 

C = 2ARt5N 7T!(K-lle-~NPV\ (2.10) 

and the S integration is on -ioo to +ioo through 
S = So. 

The form of ZN in Eq. (2.10) is that required for 
steepest-descents integration. If there exists an S. such 
that g'(S.) = 0 and g"(S.) > 0 with -S < S., then 

C 18 ,+ioo 
ZN = -. dS(S + SrI 

27T1 8,-ioo 

X exp N[g(S.) + tg"(S.)(S - S.)2 + ... ] 
~ C(S, + Srl[27TNg"(S.)r!~g(8.). (2.11) 

From Eq. (2.10), 

g'(S) = 4[1 - (t5/v)] - [v/(2b)]1(S, T), 
where 

1 Lb 

I(S, T) = - {S + i,8[v(w) - V(O)]}-l dw. (2.12) 
27T 0 

Hence, the saddle-point equation g'(S.) = 0 becomes 

8(b/v)[1 - (b/v)] = l(S., T). (2.13) 

The condition g"(SB) > 0 is fulfilled, since 

g"(S) = (v/2b)(27T)-1 

x f"{S + t{J[v(w) - V(O)]}-2 dw > O. 

The left-hand side of the saddle-point equation 
8(b/v)[1 - (b/v)] varies from 0 at v = t5 to a maximum 
of2 at v = 2b to 0 as v -+ 00. Hence, for a given (J, an 
S8 exists for all v, provided I(S, T) ;;:: 2 for some 
S > -So Hence, if 

lim I(S, T) == I( -S, T) 
8-+-S 

exists, then for {J sufficiently large (T sufficiently small) 
I( -S, T) < 2 and there is a range of v for which no 
solution for S. exists. This is the "2-phase" region 
with the second phase appearing at the transition 
volumes VI and Vg satisfying 8(c5/v)[1 - (b/v)] = 
I( -S, T). The critical point occurs when I( -S, Tc) = 
2. For T> Te , I( -S, T) > 2 and S. exists for all V. 

The region v < b is excluded owing to the negative 
values for I - (Mv). This arises owing to the "hard 
rod" of length b constraint inherent in the I-dimen
sional lattice gas. 

Alternately, if 

lim I(S, T) = 00, 
s-+-s 

then a solution S8 exists for all v and T, one analytic 
form results for all conditions, and no transition 
phenomenon is obtained. These conditions are illus
trated in Figs. I and 2. 

When S8 does not exist, the integral in ZN must be 
evaluated by another method. The contour may not 
be deformed to pass through S = -S, but may be 
changed to encircle S = -S at an arbitrarily small 
distance. Then, since g'( -S) > 0 and finite, for N 
large, the contribution to ZN from a path near S real 
for Re S < -S is negligible, and a new steepest
descents contour is obtained having a nonzero contri
bution only along the circle about -So Owing to the 
pole in the integrand at S = -S, this integral takes the 
value 27Ti times the residue at -So Hence, by following 
this new contour, one finds that the value of ZN when 

a(e-)(l - ~) I (S.T) 

FIG. 1. Solution for Tc , vc ' VI' v.; and for S. given V, T; for the case 
where I( -S, T) exists. 
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B(~(1 -~) I (S,T) 

2 

o 

FIG. 2. Solution for S. when 1(-8, T) ---+ 00. 

S8 does not exist becomes 

Z N = CeNg(-s). (2.14) 

It is interesting to note that solutions for the saddle 
point will never violate S. > -S if the saddle point is 
obtained before taking the limit K -- 00. Then Eq. 
(2.8) remains a finite sum and contains a term 

2K-l In (S + S), 

as noted previously. As a result, a term 2K-l(S + S)-l 
must be added to I(S, T) in (2.12) which, for K finite, 
causes I(S, T) to diverge as S -- -So For K large but 
finite, S8 takes on approximately its value in the limit 
K -- 00, for S8 > -So When the value of S .. for 
K -- 00, would be less than -S, then S8 -- -S in the 
case K large but finite. The result of taking the limit 
K -- 00, after solving for S;, is·to replace ZN in the 
transition region as given in Eq. (2.14) by ZN of Eq. 
(2.11) with S. = -So The additional factors in (2.11) 
do not make a contribution to the free energy per 
particle in the limit N -- 00 and, hence, either method 
yields the same thermodynamic properties. Hereafter, 
we always take K -- 00 before obtaining S •. The 
result of leaving K finite was first pointed out by 
Lewis and Wannier,u 

The thermodynamic properties are obtained from 
the free energy per particle 

1p = lim 1..(- .!) In QN' 
N-+oo N (J 

When S. exists, Eq. (2.11), with Eqs. (2.1) and (2.10), 
gives 

-{J'tfJI = ~ In (~) + In (j - }z{Jv(O) 
215 e 

+ lIn (2h~;) + g(S.). 

When S. does not exist, Eq. (2.14) gives 

-{J'tfJn = .E.. In (~) + In (j - l{Jv(O) 
215 e 

(
217m) -+ lIn h2{J + g( -S). 

(2.15) 

(2.16) 

Hence, as far as thermodynamic properties are con
cerned, the phase transition is mathematically due to 
"sticking" of the saddle point S. at the branch point 
-So 

3. REQUIREMENTS FOR A I-DIMENSIONAL 
TRANSITION 

For a transition to occur due to S. "sticking" at 
-S, it is necessary and sufficient that 1( -S, T) be 
finite. One may write Eq. (2.12) at S = -S as 

I(-S, T) = (217)-lf"[f(w)r1dW, (3.1) 

with 

few) = -S + t(J[v(w) - YeO)]. 

Therefore, the condition for a transition in one 
dimension is that the function few) goes to zero as 
(w - wm)q with q < 1 for w -- Wm' where Wm is the 
value of w making f (w) a minimum. Since cos () is an 
analytic function, such a behavior for yew) requires 
that U(r) be such that the order of summation on p 
in Eq. (2.9) and summation of an expansion of 
cos [w(p - 1)] about Wm may not be interchanged. 

A closed form for yew) in Eq. (2.9) can be obtained 
only for special cases of U(r). Thus, to facilitate the 
investigation, we replace yew) by its integral approxi
mation12 

yew) ~ ~ loodru(r) cos (~r). (3.2) 

We require that yeO) exist. Thus, U(r) must vanish 
faster than ,-1 as r -- 00. Further, if [yew) - yeO)] '" 
(w - wm)q with q < 1, then dy( w)/dw does not exist at 
w = wm • But in (3.2), since U(r) vanishes faster than 
r-1, then, for w -:;l: 0,13 

dy(w) 2 100 

• (wr) -- = - - drrU(r) sm - . 
dw 15 2 

6 15 
(3.3) 

Thus, Wm = 0 is required in order to have q < 1. 
Similarly, if U(r) vanishes faster than r-2 as r -- 00, 

then (3.3) holds at w = 0 and q > 1 results. Thus, for 
a transition, U(r) must be such that S = 0 occurs at 
w = 0 and must have an asymptotiC behavior for 
large r between r-1 and r-2 • 

A particular case meeting these requirements is 
U(r) = _g,-a, withg > o and 1 < ex. < 2. Forw = 0, 
one obtains 

viO) = 215-1 Loo - gr-a dr = -2g(ex. - 1)-115-"', (3.4) 

while, for w -:;l: 0, the change of variable x = rw15-1 

gives 
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Integration by parts yields 

p"(w) = -2g~-"'(1X - lrl 

x (cos W - W",-1 LX> x1
-", sin x dX). (3.6) 

The integral _w a- 1 f: xl-a sin x dx behaves for small 
W as AW"'-l + w2/(3 - IX) + ... , where A is a con
stant. Thus, the leading term in the expansion behaves 
as W"'-l, and so a phase transition due to a "sticking" 
saddle point occurs for 1 < IX < 2. 

The critical temperature in the model is given by 
J(O, To) = 2. For U(r) = -gr" withg fixed, To varies 
continuously with IX. Equation (2.12) gives 

2 L2lT Pc = (kTorl = - [v(w) - v(O)r l dw. (3.7) 
TT 0 

For the denominator of (3.7),14 an evaluation of 
v "'( w) yields 

() (0) 
2g(TTr(3 - IX) sin ITT(2 - IX) ,,-1 

vw-v =- W 
" a ~"2(1X - 1) ITT(2 - IX) 

+ I (-1)! w
2

! ). (3.8) 
!=l (21 + 1 - 1X)(21)! 

In the limit IX ---+ 1, the first term in the denominator 
of the integrand in Eq. (3.7) diverges, causing Pc to 
vanish as (IX - 1). As IX ---+ 2, the transition ceases to 
occur. This result appears as a decrease of To to zero 
as IX ---+ 2, since, in Eq. (3.7), the first term in the de
nominator approaches iTTW and the integral for Pc 
diverges. Thus, To varies from a limit To ---+ 0, as IX ---+ 2, 
to To---+ (g/2k~)/(1X - 1)---+ 00, as IX---+ 1. Thus, the 
more attractive the interaction, the higher the tempera
ture required before the tendency to form a "con
densed phase" is overcome. 

The calculations above may be repeated for a 2-
dimensional model, with the result that a transition 
occurs if U(r) = -gr-" with 2 < IX < 4. The transi
tion occurs, as expected, for all IX > 3 in three di
mensions. 

4. THERMODYNAMIC PROPERTIES 

The thermodynamic properties of the model can be 
obtained from the free energy per particle "P. The 
generalization of Eqs. (2.15), (2.16), and (3.2) to n 
dimensions yieIds15 

-P"Pn = (v/2~) In (2/e) + In ~ - !pv(O) 

+ gn(S) + in In (2TTm/ph2), (4.1) 
where 

gn(S) = 4(1 - b/v)S - (v/2(j)GiS) 

and 
(2lT (21r 

GiS) = (2TTrn Jo dw l '" Jo dWn 

x In {S + -iP[v(w) - yeO)]}, 
with 

yew) = b-12l- ni drU(r) cos (~-l/nw • r). 
r>{Jl/n 

In the I -phase region, S is evaluated at S., while in the 
transition region, S is evaluated at -So 

A. Internal Energy and Specific Heat 

The internal energy per particle E is given by 
E = (a(P"P)/ap)v' Noting that g~(S.) = 0 is the n
dimensional form of Eq. (2.13) and that S is propor
tional to p, we find 

(
agn(s)\ = 4S(1 _ ~) _ ...!!.... 

ap Iv P v 2~P 
and thus, from (4.1), 

En = InkT + tv(O) + (v/2~)kT 
- 4kT(I - ~/v)S. (4.2) 

Again, S is to be evaluated at S. in the I-phase region 
and at -S in the transition region. 

Next, C" = (aE/aT)" can be calculated from (4.2) 
with the result 

C" = ink + ;13 k - 4k( 1 -;) [s + T(;~)J. 
(4.3) 

Now (as/aT)" = -SIT. Thus, in the transition region 
C" = ink + k(vI2~), a finite value independent of p. 
In the I-phase region T(aS./aT)" = -p(as.lap)" is 
required. Differentiating the n-dimensional form of 
Eq. (2.13) with respect to (3, we find 

_p(as.) 
ap" f dW l .• J dwn{S. + tP[v(w) - V(O)]}-l 

= -S.+~----~-------------------f dWl •• J dwn{S. + t{3[v(w) - V(0)]}-2 

(4.4) 

By using (4.4) and (2.13) in (4.3), we find that, in the 
I-phase region, 

C" = ink + k(v/2b) + 16k(2~/v)(1 - ~/v)2[G"(S.)rl, 

(4.5) 
where 

G"(S8) = -(2TTrn f dWl •• J dWn 

x {S. + iP[v(w) - V(0)]}-2 < O. 
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When the potential is such that G"(S.) diverges as 
S. ---+ -8, the specific heat is continuous at the 
transition-even at the critical point. However, if 
G"( -8) is finite, then a discontinuity occurs at the 
transition. At the critical point, the discontinuity in 
C" has a value 4k[G"( -8)]-1. In the case of a I-di
mensional transition with potential -g,-I%, 

[viw) - v,,(O)] "" WI%-1 + O(W2). 

Hence, for G"(O) to be finite, it is necessary that 
o < 2(~ - 1) < 1 or that 1 < ~ < t. Thus, the 1-
dimensional transition using the -g,-I% potential 
gives a continuous C" at the transition for -i :::;;; ~ < 2 
and a finite discontinuity in C" for 1 < ~ < l Simi
larly, the 2-dimensional transition with U(r) = -g'-" 
and 2 < ~ < 4 gives a finite discontinuity in C" for 
2 < ~ < 3 and a continuous C" for 3 :::;;; ~ < 4. In 
three dimensions, U(r) = -gr-a. gives a transition 
for all ~ > 3, but the finite discontinuity in C" at the 
transition occurs only for 3 < ~ < t. 

H. Pressure and Compressibility 

The pressure can be found from P = -ca1pfov)p to 
give 

p = _1 In (ie) + 415 S _ Gn(S) (4.6) 
n 2t5{3 {3v2 2t5{3 , 

where S is evaluated at S. in the I-phase region and at 
-8 in the transition region. Gn(S) does not contain v 
explicitly and -8 does not depend on v. Hence, for 
cases -8 = 0, the well-known property of the spheri
cal model of constant pressure isotherms in the 
transition region is obtained. Now from (4.1), Gn(O) = 
In (TcfT) + Gn(O)IT=Tc so for -8 = 0 we have 

Pn = kT[ln(eT) - Gn(O)IT=T.J, (4.7) 
215 2Tc 

which explicitly shows the dependence of P on T in the 
transition region in the spherical model. 

In the I-phase region the compressibility can be 
obtained from 

(
OP n) = _ ~ S. + (as.) (415 __ 1 G'(S.»). 
ov /1 {3v3 OV /1 (3v2 2b{3 

Differentiation of the saddle-point equation with 
respect to v gives 

(as.) = _ 16t5
2

(..!:.. _ 1) [G"(S.)]-1, 
ov p v3 2<5 

so that 

(
oP n) = _ 8b [s. _ 16t5

2

(..!:.. _ 1)2 [G"(S.)]-IJ. 
oV p {3v3 v2 2d 

(4.8) 

Thus, for v :F 2d and -8 = 0, (oPnfov)p approaches 
zero as the transition is approached for the same cases 
where the specific heat is continuous at the transition, 
and (oP nf oV)p is discontinuous when C" is discon
tinuous. However, (oP njov)p ---+ 0 as the critical point 
is approached in all cases (for 8 = 0) owing to the 
factor [(vj2d) - 1]2 in Eq. (4.8). Thus, the isothermal 
compressibility KT == -v-1(ov/oP)p has the value 

K - {3v2[S _ 16t5
2

(..!:.. _ 1)2_1_J-l (49) 
T - 8d • v2 2t5 G"(S.) . 

and, therefore, becomes infinite at the critical point in 
the spherical model for all potentials giving 8 = o. 

5. ASYMPTOTIC HERA VIOR 

The asymptotic behavior of the thermodynamic 
properties near the transition in the I-phase region can 
be obtained in a manner similar to that used by Joyce.6 

Consider the I-dimensional case for simplicity. Near 
the transition, 0 < S. « 1 and the integral in Eq. 
(2.12) for I(S, T) can be expanded to lowest order in S 
as follows: 

1(0, T) = (21T)-1 (2" {t{3[v(w) _ V(O)]}-1 dw = 2{3c . 
Jo (3 

Hence, 

I(S, T) = 2{3c - (21Tr1 (2lr{t{3[v(w) - v(O)]}'-l 
{3 Jo 

x {I + S-lt{3[V(W) - V(O)]}-1 dw. 

Since 1(0, T) exists, 

where q, D, and 1] are positive constants and q < 1. 
(When the potential is -g'-", then q = ~ - 1.) A 
change of variable to x = DwqS-1 gives, to lowest 
order in S, 

l(S, T) = 2;c _ (21Tr-1 n-l/Qs(l/q)-1 

(2lr)"DIS 
x Jo (1 + X)-IX (1Jq)-2 dx. (5.1) 

For q-l - 2 < 0, the integral in (5.1) converges as 
S ---+ 0 to the value 

-- dx = , -1 < p < O. i
oo x2J 1T 

o 1 + x sin (p + 1)1T 

Thus, for S -- 0 to lowest order in S, 

l(S, T) - 2{3cf{3 "" -is(l/q)-lD-llq/sin [(q-l - 1)1T], 

for t < q < 1. (5.2) 



                                                                                                                                    

PHASE TRANSITIONS IN SPHERICAL LATTICE GAS 2069 

For q-l - 2 ~ 0, the integral in (5.1) diverges as 
S --+ O. In that case, the identity x(l + X)-l == 1 -
(1 + X)-l can be used to obtain an asymptotic ex
pansion of the integral with the result that, for ° < 
q < !- to lowest order in S as S -- 0, 

1(S, T) - 2~c/~ ""' _(21Tr2aD-2(q-l - 2r1S. (5.3) 

For the special case q = t, one finds, to lowest order 
in S as S -? 0, 

1(S, T) - 2~c({J ""' -(21Ttl D-2S( - In S). (5.4) 

Since G"(S) = aleS, T)/(JS, one finds from Eqs. 
(5.2)-(5.4) that, as S --° to lowest order in S, 

__ 1_ ,-...; 2D1{a(q-l _ 1)-1 sin [(q-l _ 1)1T]S2-l!q, 
G"(S) 

! < q < 1, 
,....." 21TD2( -In S)-I, q = L 
,....." (21T)2qD 2(q-l - 2), ° < q < t. (5.5) 

The values of Eqs. (5.1)-(5.3) may be used in Eq. 
(2.13) to solve for S. near the transition. Let 

11 = 2{Jc _ 86(1 _ ~). (5.6) 
{J v v 

Then, in the I-phase region near the transition, 0 < 
11 « 1. Solving for S.,we find to lowest order in tl. 

S. r-J [2 sin (q-l - 1)1T]q/(1-q) D1/(1-q)tl.q/(l-ql, 

! < q < 1, 
r-J 21TD2

tl.( -In tl.)-I, q = 1, 
,....., (21T)2(lD 2(q-l - 2)11, 0 < q < !- (5.7) 

Substitution of (5.7) and (5.5) into (4.5) then gives 
the specific heat near the transition. For t < q < I, 
the difference between Cv above and below the transi
tion vanishes as tl.(2Q-l){(I-<1). Forq = t, this difference 
vanishes as (-In tl.)-l. For 0 < q < t, the finite dis
continuity of -I6k(2b/v)(I - b/v)(21T)2(lD2(q-l - 2) 
occurs in the specific heat on passing from the I-phase 
into the transition region. 

The isothermal compressibility near the transition 
results from substitution of Eqs. (5.5) and (5.7) into 
Eq. (4.9). Away from the critical volume Vc = 26, KT 
behaves as G"(S.) near the transition, i.e., for t < 
q < I, KT r-.J tl.-(2q-1){(I-q ); for q = t, KT 1"'0..1 -In A.; 
and for 0 < q < t, KT 1"'0..1 Ilo-a constant, finite 
value. However, along the critical isochore v = Vc> 

KT behaves as S;I. Along the critical isochore A. = 
2(T/Te - 1). Hence, for v = Ve and t < q < 1, KT ,-...; 

(T - Te)-<1IU-q); for q = i, KT ", -In (T - Te)! 
(T - Te); and for ° < q < i, KT ,...., (T - Te)-I. 

The behavior of Cv and KT for other approaches to 
the transition can be obtained by using the appro
priate expression for tl.. For example, along an iso
chore v ¢ vc' tl. = 2(T/To - Tt!Te), where Tt is the 
transition temperature, while along an isotherm 

where V t is the transition volume. 
For the potential _gr-Ct

, one has, from Eq. (3.8), 
q = IX - I and 

D = g{J r(3 - IX) sin t1T(2 - ex.). 
4ba (ex. - 1)(2 - IX) 

From (3.7) and (3.8), we see Pc is proportional to 
g-lb a• Hence, at the critical point, D is independent 
of cell size t5 and potential strength g, and so the 
critical properties of the model depend only on the 
choice of exponent IX. The critical temperature depends 
on g and t5 only through the factor gb- Ct

• Hence, at 
least in a formal sense, the spherical lattice gas with 
potential _gr-a corresponds to a continuum gas in the 
limit b -? 0, provided the potential strength vanishes 
as blX

• 

For two or three dimensions, the results are qualita
tively similar. Conversion of Eq. (5.1) to a multiple 
integral shows that the behavior of I(S, T) - 2PclP is 
as sn{Q-l for q > in, as (-In S)S for q = tn, and as S 
for q < in; n being the number of dimensions. Since 
in the case of the _gr- IX potential, q = IX - n or 2 
(whichever is smaller), the finite value for G"(O) occurs 
for IX < in as was noted above. Along v = vC ' KT 
generalizes to KT ,...., (T - Tc)-q!(n-q) for l'n < q ~ 2, 
n = 2, 3. The other critical properties generalize in a 
similar manner. These critical exponents are precisely 
the same as those obtained by Joyce6 for the correspond
ing thermodynamic properties of the spherical ferro
magnet with the same interaction potential, in keeping 
with the general correspondence of the two systems. 2 

6. DISCUSSION 

In the evaluation of the partition function made 
above to obtain a I-dimensional phase transition, the 
approximate Fourier coefficients v(w) ofEq. (3.2) were 
substituted for the exact Fourier coefficients of the 
potential given by Eq. (2.9). Although the result is not 
then, in general, an exact solution of the spherical 
lattice gas of Gersch and Berlin, the qualitative 
features of the general spherical model, such as 
constant pressure in the 2-phase region,2 still apply. 
The equations resulting from this substitution are 
still a legitimate place to search for phase transitions, 
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and we anticipate that the results obtained will also be 
qualitatively similar to the exact solution. From Eq. 
(3.3), one sees readily that a necessary condition for a 
phase transition in this I-dimensional model is that 
the potential have an asymptotic form for large , 
between,-l and ,-2. We note that a potential such as 
,-21n, satisfies this requirement.5 

The spherical model is such that the specific heat 
remains finite at the critical point in any number of 
dimensions for all potentials which the formalism will 
admit. However, for the inverse power law potentials 
considered above, a finite discontinuity occurs in Cv 

at the transition for the power oc sufficiently small. 
Further, the isothermal compressibility, while di
vergent at the critical point, does retain a finite value 
as the transition is approached along noncritical 
temperatures. Asymptotic expansion of the integrals 
1(8) and G"(S) near the transition shows that prop
erties depend linearly on the distance from the transi
tion for the power oc less than! times the number of 
dimensions, while for larger oc properties near the 
transition depend upon the distance from the transi
tion raised to a power which is a function of oc. The 
critical properties are independent of cell size and 
potential strength, and are determined by the power 
oc alone. The spherical lattice gas with a nonintegral 
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power law potential can be tailored through choice of 
the power, to give a desired value for the behavior of 
isothermal compressibility near the critical point even 
though a specific heat singularity near the critical 
point cannot be obtained. 
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The possible use of the classical Newton approximation method, as extended by Kantorovich to 
Banach spaces, is discussed in connection with the problem of solving the unitarity equation for the phase 
of a scattering amplitude, in terms of the corresponding differential cross section. 

The purpose of this paper is to discuss the usefulness 
of a classical approximation method as applied to the 
problem of finding a solution of the nonlinear integral 
equation 

P[tfol == sin tfo(x) 

- ;Jfh(X, y, z)cos [.p(y) - .p(z)] dy dz = O. 

D (1) 

This equation has been shown by Newton l to express 

the unitarity condition in its simplest form, and the 
problem of solving it arose from the question whether 
the phase .p(x) of a scattering amplitude 

F(x) = G(x) exp Ii.p(x)] 

can be determined in terms of its modulus G(x). In 
this context, G(x) can be directly given in terms of the 
differential cross section which is supposed to be 
known at one given energy for all scattering angles 
o (x = cos 0). The unitarity condition leads then to 
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Eq. (I), with 

J.h(x,y, z) 

= G(y)G(Z)/2TTG(X)(1 - x2 - y2 - Z2 + 2xyz)! 
(2) 

and the domain of integration is restricted to the 
interior of the ellipse in the (y, z) plane where the 
radicand in (2) is positive. 

The constant A is introduced here for later conven
ience, and is supposed to be chosen such that 

_~~~1q(X) = 1, q(x) = II hex, y, z) dy dz. (3) 

D 

Assuming that the function G(x) does not vanish in 
[- I, I], Newton used fixed-point theorems in the 
Banach space C[ -1, 1] of all continuous functions 
with the norm 

lie/> II = sup Ie/>(x) I (4) 
-1:S;",:S;1 

to prove that Eq. (1) has solutions if A < 1 and, 
furthermore, that, if A < 5-i , such solutions are also 
unique. This result was improved by Martin,2 who 
showed that the uniqueness range can be pushed up to 
A = 0.79 and conjectured that it could, be extended 
even further, possibly as far as A = 1. 

In this paper we present a study of Eq. (1) by means 
of the Newton-Kantorovich approximation method. 
The motivation of this approach is twofold: Firstly, 
this is an alternative way of establishing the existence 
and uniqueness of solutions for this equation; sec
ondly, and possibly more importantly, this method 
enables us to indicate an effective specific process of 
constructing the solution, which may be useful when 
the kernel hex, y, z) is explicitly known and the actual 

. finding of a solution is undertaken. 
The Newton-Kantorovich method is a direct ex

tension to functional spaces of the classical Newton 
method of finding a solution of a real equation f(x) = 
o by successive approximations, which start with an 
appropriately chosen Xo and are then produced by the 
formula xn+l = Xn - [f'(x n)]-1f(xn). This familiar 
method has first been formulated in Banach spaces by 
Kantorovich,3 but there exist also more or less ex
tensive studies in spaces with partially ordered norm 
and in Hilbert spaces.4 In the following we shall 
restrict ourselves to Banach spaces; more precisely, 
the domain of the operator P defined by (1) is taken to 
be the set K of all functions e/>(x) E C[ -1, 1] such that 

o ~ e/>(x) ~ iTT. (5) 
(This limitation is introduced in order to avoid the 
obvious ambiguity that, if e/> is a solution of P[e/>] = 0, 
then TT - e/> is a solution as well.) The nonlinear 
operator P, therefore, maps K,c C[ -1,1] into 

C[-I, I], and we can thus make use of the following 
theorem. 5 

Theorem 1,' Let e/>o(x) E K be selected such that: 
(i) the Frechet derivative pi [e/>o] exists and has a 

bounded inverse with 

II (P'[e/>0])-1 II ~ flo, II (Pi [e/>0])-1(P[e/>0]) II ~ fJo; 

(ii) for all e/>(x) in the sphere S( e/>o, '0) C K (i.e., for 
all lie/> - e/>oll ~ '0 with ro defined below), the Frechet 
derivativeP"[e/>] exists and liP" [e/» II ~ Yo; 

(iii) h = flofJoYo ~ i and ro is any number such that 
S( e/>o, '0) c K and which is not less than [1-
(I - 2ho)!]fJo/ho. Then the sequence {e/>n(x)} defined by 

e/>n+l = ¢>n - (PI[¢>])-l[P[¢>n]], n 2 0, 

exists for all n and converges to a solution e/> E 

S(¢>o, '0) of preP] = 0 at the rate 

II¢> - e/>nll ~ 2-n(2hop
n
fJo/ho, n = 0, 1, ... 

Moreover, ¢> is unique in every closed sphere 

8(¢>0, r) c S(¢>o, '0) 

with r < [I + (I - 2ho)!]fJo/ho. 

For the nonlinear operator preP], the Frechet deriv
atives can be easily computed. pi [¢>] is the linear 
operator 

PI[¢>]~ = ~(x) cos e/>(x) + A II hex, y, z)[Hy) - ~(z)] 
D 

X sin [¢>(y) - ¢>(z)] dy dz, (6) 

where ~ E C[ -I, 1], and P" [¢>] is the bilinear operator 

PII[e/>]~fJ = -~(x)fJ(x) sin e/>(x) 

+ A II hex, y, z [~(y) - ~(z)] 
D 

X [fJ(Y) - fJ(z)] cos [e/>(y) - e/>(z)] dy dz, 

(7) 

with a, fJ) E C[-I, I] X C[-I, I). Both these oper
ators have range in C[ -1, 1]. 

In applying this theorem, it is important to note that 
S(e/>o, r) c 8(e/>0, 2fJo) c S(¢>o, ro). If S(¢>o, 2fJo) c K, 
we may then take r = 2fJo and estimate the least 
upper bound on IIP"[¢>]II for e/> E S(e/>o, 2fJo). The 
sequence {c/>n} will thus converge to a solution of 
P[e/>] = 0 which is unique in 8(¢>0, 2fJo)' 

The main difficulty is readily apparent: The inverse 
operator (P,)-1 must be found at each step of the 
iteration process. This is, in general, difficult, except 
in one case, namely, as can be realized by simple 
inspection of the expression (6), if ¢>o(x) = const, the 
integral part vanishes and the operator can be trivially 
inverted. 
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In order to explore this possibility, let us then choose 

cPo(x) = sin-1 a, (8) 

where a is a constant. Then it follows immediately that 

flo = (1 - a2)-1 (9) 
and, since 

P[sin-1 a] = a - Aq(x), (10) 
that 

max la - Aq(x)1 (1 - a2rl 
IlJ :::;; max {Ia _ AI, la - Ael}(1 - a2)-! = 170' (11) 

where e = min q(x). It is of course desirable that 170 be 
IlJ 

as small a number as possible and, if A < 1, this can be 
achieved by taking 

a = tA(1 + e). (12) 
Hence, 

170 = .1.(1 - e)[4 - .1.2(1 + e)2]-l. (13) 

From (7) it follows now that 

IIP"[cP]II :::;; 4.1. + sin cP, cP E S(sin-1 a, 2170), 

S 4.1. + sin (sin-1 a + 21Jo), (14) 

provided 

[sin-1 a - 2170' sin-1 a + 2170] c [0, 1rr]. 

This clearly does not happen for all possible values of 
A and e. In particular if e = 0, sin-1 a < 2170 for all 
). < 1. 

Admittedly, the possibility that E = ° can hardly 
be thought of as corresponding to 'a realistic physical 
situation. Nevertheless, for a given A, the condition 
sin-1 a ~ 2170 imposes a lower bound on e which may 
or may not be realized. If the latter circumstance 
occurs, the upper bound on liP" II must be looked for 
in S(sin-1 a, 2170) n K. The theorem requires now that 

2.1.(1 - e)[4A + sin (sin-1 a + 2170)] 

x [4 - .1.2(1 + e)2]-1 :::;; t, (15) 

and this clearly imposes a limitation upon the values of 
). for which the existence of solutions is guaranteed. 
An estimate of the largest value of A allowed by (15) 
can be obtained under the assumption that it has to be 
significantly less than unity to make powers higher 
than the fourth negligible. Then, up to terms propor
tional to ).5 , 

sin (sin-1 a + 2170) 

= 1),(3 - e) - /2).3(1 - e)2(5 + e) 

and (15) can be rewritten as 

).4(1 - e)3(5 + e) - 3).2(23 - 22e + 3e2
) + 12 ~ 0 

and in the extreme situation where e = 0, this requires 
that ). ~ 0,42. It is, however, apparent that as e in-

creases, this limitation is weakened, and as E approaches 
unity the inequality is satisfied for any A < 1. As a 
matter of fact, this is hardly surprising since e = 1 
corresponds to q(x) = 1 and 170 = 0, in which case 
cPo = sin-1 ). is actually an exact solution of (1). One 
can therefore draw the conclusion that the initiation 
of the iteration process by means of a constant makes 
sense if and, in fact, only if 170 is a small enough 
number, which is the case if e is close enough to unity 
or ). is small enough. 

Newton's formula can now be used to compute the 
next iterate 

cPl(X) = sin-1 a - [a - Aq(x)](1 - a2)-1. (16) 

At this point one should first check that cPl(X) E K, 
and again one can see that this is not automatically 
fulfilled and that it requires an adequate lower bound 
on q(x). If this is not available, or if one insists to 
devise an iteration process converging independently 
of the existence of such a lower bound, the only 
possible choice one has is a = 0. In this case flo = 1, 
170 = )., Yo = 4), + sin 2.1., and the condition ho S 1 
requires that A < 0.28. 

The next step of the iteration process, leading to 
cP2(X) , involves the explicit form of the operator 
(P'[cPIl)-l. This is no longer a trivial matter since cPl(X) 
is no longer a constant. If (P' [cPl])-l cannot be found 
explicitly, and this might very well be the case, then 
one can sidestep the difficulty by using the modified 
formula ' 

cPn+1 = cPn - (P'[cPo])-l(P[cPn])' (17) 

which gives rise to a. sequence converging under the 
same conditions as the original one, only at the slower 
rate 

IlcP - cPn II :s; [1 - (1 - 2ho)1]n-121Jo. (18) 

When neither one of these possibilities is conven
ient, one should recognize that a more fortunate 
choice for cPo(x) is needed. That such a choice is 
available can be shown by making use of a theorem 
which can be derived essentially from Theorem l.6 

Theorem 2: Let Eq. (1) have the form 

P[cP] = n[cp] + R[cp] 

and let cPo(x) E Kbe a solution ofthe equation TI[cp] = 
O. If 

(i) TI'[cPo] exists'and has a bounded inverse with 

II(TI'[cPo])-lll :::;; flo and II (TI' [cPo])-l(R[cPo]) II :::;; 170' 

(ii) II(TI' [CPo])-lR' [CPo] II ~ rt. < 1, 
(iii) for all cP(x) E S(CPo, 2170/(1 - ex» c K, 

II(TI' [CPO])-lTI" [cp] II ~ r, II(TI' [CPo])-l R"[cp] II ~ b, 
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and 

(iv) ho = 1]o(Y + ~)/(l - OC)2 ~ !, 
then the sequence defined by Newton's formula con
verges to a unique solution cP E S(CPo, 21]0/(1 - oc» at 
the rate 

II cP - cpnll ~ 2-n(2ho)2
n 

1]o/ho(1 - oc). 

One possible way of splitting Eq. (1) is by taking 

Il[cp] = sin cP - sin CPo (19) 
and 

R[cp] = sin CPo - AII hex, y, z) 

D 
X cos [cp(y) - cp(z)] dy dz, (20) 

where CPo is still to be chosen. One possibly advanta
geous choice is 

CPo(x) = sin-1 A;'q(x), (21) 

with 0 ~ A ~ 1. Hence 

Po = (1 - A2;'2)-t (22) 
and' 

'YJo = Po max {A(1 - A), A[A - (1 - A2A2)-t]). (23) 

It appears convenient now to take 

provided 21]0/(1 - oc) < !7T. If this inequality is satis
fied, then, to a good approximation, 

sin 21]0 _ ~ 2;,3 

1 - oc - 4 + },,2 + 4 - 9A.2 ' 

so that the condition 

h _ 2;,4 4 + ,12 (2 _2_ A2) 
o - 4 _ 9A,2 + 4 + ;'2 + 4 _ 9A,2 

implies that A, < 0.51. If A does satisfy this condition, 
21]0/(1 - oc) < 0.15. This not only justifies a posteriori 
the estimate (31), but shows also that the solution 
cp(x) ~ 0.62 < 7T/2, as it should. 

One cannot emphasize too strongly that the success
ful use of the Newton-Kantorovich method rests 
heavily upon the implicit possibility of making a good 
choice for the starting point. It is therefore worthwhile 
to

l 
discuss a means of finding a good initial approxi

mation, which is essentially suggested by the familiar 
procedure consisting in replacing the actual kernel of 
an integral equation by a separable kernel. 

Let wi(x) be a set of functions orthogonal on [-1, 
1] (e.g., Legendre polynomials) and suppose that the 
function 

A = 4/(4 + ;'2), (24) g(x, y, z) = hex, y, z)O[1 - x2 - y2 - Z2 + 2xyz] 
in which case (33) 

Po = (4 + A2)(4 - A,2)-\ 1]0 = A,3(4 - A,2)-1. (25) can be expanded as 

It follows then that, since 

R/[cp]~(X) = A II hex, y, z)[;(y) - ~(z)] 
D 

X sin [cp(y) - cp(z)] dy dz, (26) 
we can write 

00 

g(x, y, z) = I cly, z)wb)· 
i=O 

Let us then define the function 
N 

gN(X, y, z) = I c;(y, z)w;(x) 
;=0 

(34) 

(35) 

(27) and recognize that 
so that 

(28) 

The condition oc < 1 implies that A, < i but, as we 
shall see shortly, A, must be subjected to an even 
stronger limitation. 

Since now 

Il"[cp];1] = -~1] sin cp (29) 
and 

R"[cp];1] = A II hex, y, z)[;(y) - ~(z)] 
D 

X [1](y) - 1](z)] cos [cp(y) - cp(z)] dy dz, 

(30) 
it follows that 

N 

sin CPo(x) = "Po(x) = I Aiwb) (36) 
;=0 

is a solution of the equation 

"Po(x) - A II gN(X, y, z) cos [cpo(y) - CPo(Z)] dy dz = 0, 

(37) 

provided the Ai' i = 0, 1, ... , N, form a solution of 
the nonlinear system 

Ak - A ffCk(y, z) cos (sin-1 I A,wb) 

- sin-1 .2 A,w;(z» dy dz = 0, 

k = 0, 1, ... ,N. (38) 

and 
IIIl"[cp]1I ~ sin [21]0/(1 - oc)] 

IIR"[cp]1I ~ 4A, 

(31) If one takes then "Po as the initial approximation, the 
convergence of the Newton sequence is guaranteed by 

(32) the following theorem.s 
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Theorem 3: Let Eq. (1) be written as 

where 1p = sin 1> and 

11[1p] = 1p(x) - A ff HN(x, y, z; 1p(y) , 1p(z» dy dz, 

R[1p] = A ff[HN(X, y, z; 1p(y), 1p(z» 

- H(x, y, z; 1p(y), 1p(z»] dy dz, 

and let K(x, y, z; 1po(y), 1po(z» be the resolvent of the 
kernel of the linear operator 11' [1po]. If 

0) JK(x, y, z; 1po(y), 1po(z»J dy dz ::::;; B, 
(ii) JJR[1po]JJ ::::;; 'f}, 

(iii) JJR'[1J!o]JJ ::::;; oc, 
(iv) JJI1"[1p]JJ ::::;; K, JJR"[1p]JJ ::::;; L for 

1p E S(1po, 2'f}(1 + B)/[I - oc(1 + B)]), 

(v) oc(1 + B) < 1, h = (1 + B2)(K + L)'f}/ 
[I - d(1 + B)J2 ::::;; t, 

then Newton's sequence starting with 1po converges to 
a unique solution of Eq. (1) in the sphere S. 

From a .practical viewpoint the advantage offered 
by this theorem lies in the fact that condition (v) can 
in principle be always satisfied, provided N is taken 
large enough. From a theoretical viewpoint, though, it 
is apparent that the question of the existence of one or 
more solutions has been shifted from the original 
equation to the system (38) for the set of constants 
Ai. While in general the problem of establishing the 
existence of a solution of this system can be as hard as 
that for the Eq. (1), in some cases it may be easier to 
handle. 

To illustrate this possibility, let us consider the 
simple case when the expansion (36) consists of just 
one term, namely, 

1po = AAq(x), (39) 

with 0 ::::;; A ::::;; 1. Clearly, A must be a solution of the 
equation 

f(A) - A = 0, (40) 
where 

f(A) = ffe(y, z) cos [sin-1 AAq(y) 

- sin-1 AAq(z)] dy dz (41) 
and 

111 11 e(y, z) = - g(x, y, z) dx, p = q(x) dx. (42) 
P -1 -1 

Since 
(43) 

it readily follows that Eq. (40) necessarily has at least 
one solution in the range ((1 + A2)-t, 1). A sufficient 
condition that there be just one solution can be simply 
derived by noticing that there could be more than one 
solution only if df/dA = 1 for values of A in the indi
cated range. But 

- < <---:-I 
df I A).2 ).2 
dA - (1 - A2.).2)t - (1 _ A2)t' 

(44) 

so that dJldA < 1 if ,14 + A2 - 1 < 0, i.e., if A < 
0.78. Further use of Theorem 3 could be made if Eq. 
(40) were actually solved for A, and this can certainly 
be done when the kernel is explicitly given. One could 
stiII note, however, that the condition just derived for 
A guarantees the existence of an upper bound on the 
resolvent K. Indeed, the linear equation 

w(x) + Aq(x) f f e(y, z) sin [sin-1 A).q(y) 

_ sin-1 AAq(z)] ( w(y) 
[1 - A2A2q2(y)]t 

- w(z) ) d dz - (x) 
[1 _ A2).2q2(Z»)t y - X 

can easily be solved with respect to wand the resolvent 
explicitly found. It follows then that 

B <_,1_ 2AA 
- 1 + AC (1 - A2A2)t ' 

where 

C = ffe(y, z) sin [sin-1 AAq(y) - sin-1 AAq(z)) 

x ( q(y) - q(z) ) d dz 
[1 - A2A2q2(y»)t [1 _ A2A2q2(z»)t y , 

so that 

and 
c ~ -AAJ(1 - AZAZ)t 

B < 2,12/[(1 - A2)t - ,12], 

which exists as long as A < 0.78. 

1 R. G. Newton, J. Math. Phys. 9, 2050 (1968). 
2 A. Martin, Nuovo Cimento S9A, 131 (1969). 
3 See L. V. Kantorovich and G. P. Akilov, Functional Analysis in 

Normed Spaces (Macmillan, New York, 1964), Chap. XVIII. 
4 For a review of these formulations and extensive references, see 

R. H. Moore, in Nonlinear Integral Equations (Proceedings of an Ad
vanced Seminar at the University of Wisconsin, Madison), P. M. 
Anselone, Ed. (The University of Wisconsin Press, Madison, 1964). 

6 See Ref. 3, p. 708, and also H. A. Antosiewicz and W. C. Rhein
boldt, in Survey of Numerical Analysis, J. Todd, Ed. (McGraw-Hill, 
New York, 1962). 

8 See Ref. 3, p. 719. 
7 From this point on we let .- = 0, in order to simplify the alge

bra. The case .- ~ 0 can be followed through without difficulty. 
8 See Ref. 3, p. 733. 
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We study Maxwell's equations having a source given by a gradient. The source function [obeys the 
empty-space wave equation as a consequence of current conservation. We find that this system can be 
written as a mass-zero Dirac equation. Our relationship between tensor and spinor equations is an 
improvement over other published results, so far as simplicity is concerned. 

I. INTRODUCTION 

This paper has two purposes. The first is to learn a 
few things about Maxwell's equations having a source 
of a particularly simple type. We shall take the source 
to be a gradient of a scalar f The second purpose is to 
find a relationship between simple tensor equations 
and spinor systems that is an improvement over the 
other published results, so far as simplicity is con
cerned. l 

We find that the Maxwell system has an alternative 
description as a mass-zero Dirac equation. 

II. MAXWELL EQUATIONS WITH SOURCE 
OBEYING THE WAVE EQUATION 

We study the equations 

V • H = 0, V . E = _ otf , 
at 

aH aE 
V x E = - -, V x H = - + Vtf. (1) at at 

The continuity equation implies that 

Of= o. (2) 

Thus, the source of the Maxwell equations (the func
tion f) obeys the empty-space wave equation. 

Defining.l[;;] by 

we then get 

E1 = h10] , HI = .1[23] , 

E2 = h20] , H2 = .1[31] , 

E3 = f[ao] , Ha = .1[12] , 

(3) 

(4) 

Thus, the source in (1) does not prevent E and H from 
satisfying a free second-derivative wave equation. 

III. INTRODUCTION OF SPINOR FIELDS 

We consider the following set of equations 

and Jehle.2 The spin indices are raised and lowered 
with EAB = EAB = (.?io)' The space-time metric is 
gij = (1, -1, -1, -1). Ok is given by (a/at, V). XA 
and ipA are constant 2-component spinors for which we 
take XAipA ¥= O. Let us write X = (~) and ip = (g). 
Then, XAipA ¥= 0 means AD - BC ¥= O. We write out 
the sum over D in (5). This gives 

A akABa I . alFo fll + B .... kAB .... I . .... 2F':l fll - 0 AF 11 k I v v AFvll Uk I - , 

CakABa! . aLFo fll + D .... kAB .... 1 • .... 2F':l fll - 0 AF 11 k! v v AFvll Uk I - . 

We multiply the top equation by D and the bottom 
by B and subtract. This gives 

The equation 
akABa l . alF':l fll - 0 AF 11 Uk 1- . (6a) 

(6b) 

follows when, instead, we multiply the top by C and 
the bottom by A and subtract. We see that 'the con
stant spinors no longer appear in (6). We see also that 
(6) is a linear equation for fill' We next expand (6) term 
by term using the explicit form of the spin matrices. 
These are four complex equations. The eight equations 
we obtain can be seen to be the Maxwell equations 
(1) with 

f = fi + f~ + f: + fg = Tr r I' (7) 

We define the spinors XA and CfJ A by 

±fll BD'.-XA = ,all (lADXB, 
_ ±fll BD! .-CfJ A - 1(111 (l ADCfJB . (8) 

Then, from (5) we see that XA and CfJA obey the Dirac 
free-field mass-zero equations 

akAB ':> X - 0 Uk A - , 

ak.4BOkCfJ A = O. (9) 

ak.4Bx- a l • q?,F':> [II - 0 D AF 11 Uk 1- , 

kAB - I· _nF':> [II 0 a CfJDaAFUV Uk I = , 

We have written (5) in terms of f1l 1 . However, in ex
panding (6), only f[ij] and f appear. Thi.s can be seen 

(5) also by using the properties of the spin matrices 

where a~B' akAB are the spin matrices found in Bade 

2075 

(10) 
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in conjunction with (8). XA and rp A then can be 
written8 

_ ± ( I" ;B(j,. - + f - ) XA - )[#]0" 0" AOXB 2 XA , 

(11) 

This shows explicitly that only 1[i;1 and I appear in (9). 
Thus, the conclusion of this section is that the 

Maxwell equations (1) can be written as the mass-zero 
Dirac equation (9), with XA' rp A given in terms of 
l[iil and/by (11). 

IV. COMPARISON WIm OTHER 
INVESTIGATORS 

The relationships between simple tensor equations 
with spin or equations (or simple spinor equations with 
tensor equations) by other authors are rather com
plicated. This point is emphasized by simply quoting 
the literature. Klauderl starts with mass-zero Dirac 
equations and gets 

Cm(okFim + OiF mk + OmFki) 

+ CiomFm
k - CkomFm

i = 0, (12) 

with em a constant vector. Pennyl also starts with 
mass-zero Dirac equations. He makes use of a different 
relationship between spinors and tensors and then gets 

FikOm(Fm'J) + i*Fm'J) + Fmko'J)(Fmi - i*Fmi)=O, (13) 

where * F m'J) is the dual field. From Laporte and 
Uhlenbeckl we can obtain the following representation 
of (1) «() A, (J A are the spinor fields): 

akAiJOk(JA = -O"~iJ(Okf)(JO - O"kAiJ()A()OOk()O 

- akAiJ() A(J°Ok()O' 

O"kAiJOk() A = <iOiJCOkf)()O + O"kAj/() A()OOk()O 

+ akAiJ() ACJ °Ok()O' (14) 

Thus, our equations are an improvement over the 
other equations so far as simplicity is concerned. The 
Ruse equations are extremely complicated; so we refer 
the reader to the original article. 1 

V. A SOLUTION OF THE MAXWELL 
EQUATIONS 

In this section, we obtain a solution of the Maxwell's 
equations by using the plane-wave solutions of the 
m = ° Dirac equations. As the plane-wave solution 
(17) is not the most general solution of the Dirac 
equation, we will not expect to get the most general 
Maxwell solution either. 

iA and if A are arbitrary so far. We shall take the 
simple choice 

iA = (~), if A = (~). 
Then, (11) becomes 

Xl = ± (il + .1[80] + ifr.12~' 
X2 = ± U[lS] + if[20] + .1[10] + if(231)' 

rpl = ± U[Sl] + if[02] + .1[10] + ifr.2S])' 

rp2 = ± (il + .l[oa] + if[21~' 

(15) 

(16) 

There are eight variables XA , rp A • They are expressed in 
terms of seven variables .l[i;] and / by means of eight 
equations. Thus, there is a relationship to be satisfied 
among XA and rp A' From (16) we see that Xl + rp2 = 
Real. We shall also study the situation where XA and 
rp A satisfy the condition XA rpA = 0. 

The following plane-wave solutions of (9) obey the 
conditions Xl + rp2 = Real (we take Pa yf: ±E): 

XA = N(P' : ip, )e;c' .. -.<l, 

E + Pa 

~A = N(~ ~ ;: )e-;" .. -.<l. (17) 

N is the normalization which is to be real. We also get 
a solution to (9) by setting p -+ -p and E -+ -E in 
(17). 

By comparing (17) with (l6),we get 

f = ±2N cos (p • x - Et), 

N 
El = ± 2 2 [PIE cos (p • x - Et) 

E - Pa 

- Ep2 sin (p . x - Et)], 

N 
E2 = ± 2 2 [P2E cos (p • x - Et) 

E - Ps 

+ EPI sin (p • x - Et)], 

Ea = 0, 

N 
HI = ± 2 2 [-PSP2COS(P'x - Et) 

. E - Ps 

- PIPS sin (p. x - Et)], 

N 
Hz = ± z 2 [PaP1cos(p'x - Et} 

E - Pa 

- PaPs sin (p • x - Et)], 

Hs = ±N sin (p • x - Et). 

(18) 

The 3 direction appears favored due to the choice of 
O"uB as the diagonal matrix. The plane-wave solutions 
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(17) satisfy XLI. cpA = O. This implies using (16) that 

E·H=O, 
E2 _ H2 = lf2 = N 2 cos2 (p . X - Et). (19) 

The condition f = 0 can not be satisfied unless the 
normalization is chosen to be zero, making XLI. == 
CPLI. = O. 

We can, in fact, check directly that (18) gives a 
solution to (1) and (19). 

From (4), we obtain a plane-wave solution of the 
form 

E = EO(p) cos (p. x - Et) + ES(p) sin (p . x - Et), 

H = HO(p) cos (p • x - Et) + HS(p) sin (p . x - Et). 

(20) 

Since we have chosen to discuss those solutions of (9) 
obeying XAcpA = 0, the coefficients ES, EO, HS, and 
HO are subject to the condition (19). We have obtained 

JOURNAL OF MATHEMATICAL PHYSICS 

these coefficients using the plane-wave solutions of the 
Dirac equation (17). 

We have, thus, furnished an example of a situation 
when f comes out to be nonzero. 

VI. CONCLUSION 

We have shown that Maxwell's equations having a 
source of the gradient type can be expressed as a 
mass zero Dirac equation. We have compared our 
results with others and have found our equations to be 
simpler. 
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I. INTRODUCTION 

Recently, much attention has been paid to the 
group-theoretical analysis of the scattering amplitude 
at zero or negative momentum transfer.L2 For the 
latter case, the amplitude exhibits an 0(2, 1) sym
metry. Reggeons, which take the role of forces in 
relativistic S-matrix theory,3 transform under this 
symmetry group 0(2, I) as the basis vector4 of its 
unitary irreducible representation UIR. Thus, the 
Clebsch-Gordan coefficient (the CG coefficient) of 
0(2, 1) plays the same role as that of 0(3) for 
physical particles. . 

The CG coefficient of 0(2, 1) for three positive 
discrete (or, equivalently, negative discrete) series 
was worked out by Andrews and Gunson5 and Sanni-

kov.6 Pukanszki found the multiplicity of the 
irreducible components resulting from decomposition 
of the product of two UIR's of 0(2, 1), but he did 
not work out the CG coefficients explicitly. Ferretti 
and VerdeS worked out the Clebsch-Gordan series for 
two continuous series with some restrictions on the 
magnetic quantum numbers, by using the Sommer
feld-Watson transform. However, their definition of 
the Wigner coefficient is not normalized. They also 
did not investigate the relationships between the 
CG coefficients (or various cases. Holman and 
Biedenharn9 derived many CG coefficients from the 
difference equation of second order obtained from 
their recursion relations. Thus, their CG coefficient 
is not continuable, in the sense that it has different 
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(17) satisfy XLI. cpA = O. This implies using (16) that 

E·H=O, 
E2 _ H2 = lf2 = N 2 cos2 (p . X - Et). (19) 
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symmetry group 0(2, I) as the basis vector4 of its 
unitary irreducible representation UIR. Thus, the 
Clebsch-Gordan coefficient (the CG coefficient) of 
0(2, 1) plays the same role as that of 0(3) for 
physical particles. . 

The CG coefficient of 0(2, 1) for three positive 
discrete (or, equivalently, negative discrete) series 
was worked out by Andrews and Gunson5 and Sanni-

kov.6 Pukanszki found the multiplicity of the 
irreducible components resulting from decomposition 
of the product of two UIR's of 0(2, 1), but he did 
not work out the CG coefficients explicitly. Ferretti 
and VerdeS worked out the Clebsch-Gordan series for 
two continuous series with some restrictions on the 
magnetic quantum numbers, by using the Sommer
feld-Watson transform. However, their definition of 
the Wigner coefficient is not normalized. They also 
did not investigate the relationships between the 
CG coefficients (or various cases. Holman and 
Biedenharn9 derived many CG coefficients from the 
difference equation of second order obtained from 
their recursion relations. Thus, their CG coefficient 
is not continuable, in the sense that it has different 
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functional forms for various cases. Here, we derive 
two continuable CG coefficients which are ortho
normal to each other for the case of three continuous 
series. For all other cases, one of them vanishes, and 
the other is identical to the CG coefficient obtained 
from the CG series. 

In Sec. I, we introduce the definition of the CG 
coefficient and the conventions and notations used in 
this paper. We reproduce the derivation of the 
Clebsch-Gordan series for two continuous series with 
positive magnetic quantum numbers by the method 
initiated by Andrews and Gunson5 and developed by 
Ferretti and Verde.s We point out the differences 
between our results and theirs, and explain how they 
occur. In Sec. III, we study the symmetry properties 
and asymptotic behavior of the G function, which is 
equivalent to the Wigner coefficient defined by Ferretti 
and Verde,S and which is simply related to the CG 
coefficient. In Sec. IV, we work out all other CG 
series and, thus, all other CG coefficients for positive 
magnetic quantum numbers. From them, we find two 
CG coefficients satisfying the properties stated at the 
end of the last paragraph above. In Sec. V, we cal
culate the CG series and, thus, the CG coefficients 
for all other cases. Finally, we show that the CG 
coefficients are also valid for the group SU(l, 1), the 
covering group of 0(2,1). 

The scattering amplitude at vanishing momentum 
transfer has larger symmetry.2 If one restricts oneself 
to the ordinary helicity amplitude, one has 0(4) 
symmetrylO when the total energy is less than threshold 
energy, and 0(2,2) symmetryll above threshold. The 
explicit expression of the UIR of 0(2, 2), suitable for 
this purpose, has not been worked out. In Sec. VI, 
we express explicitly the VIR of 0(2, 2) group in 
terms of the CG coefficients of 0(2, 1). The trans
formation between two VIR's of 0(2, 2), corre
sponding to two different bases, is discussed. In the 
final section, we summarize the results obtained. 

U. DECOMPOSITION OF THE PRODUCT 
OF TWO CONTINUOUS SERIES FOR 

vi> ,,"i > 0 

The CG coefficientU (or, equivalently, the Wigner 
coefficient12) of 0(3) is obtained essentially from its 
recursion relations13 or from the integrals12 involving 
three representation functions like dp/(z) of 0(3) in 
the integrand. The calculation of the CG coefficient 
of 0(2, 1) is more complicated than that of 0(3), 
even though the representation function d.,/(z) of 
0(2, 1) is a continuation in j of that of 0(3). The 
method applicable to the latter is not directly applic
able to the fonner. The differences are (a) the group 

0(2,1) is noncompact and has an infinite group 
manifold, and (b) the VIR of 0(2,1) has three 
principal series: continuous, positive discrete, and 
negative discrete. Each principal series has a different 
range for the magnetic quantum numbers. The first 
difference prevents one from calculating the CG 
coefficient directly from the integral 

f D!~1(g)D~:Ila<g)D!~1l8(g) dg, 

since there are no general formulas for the integrals 
of products of three hypergeometric functions corre
sponding to the 0(2, 1) representation functions. 
Because of the second fact, there are no simple CG 
coefficients for particular values of the magnetic 
quantum numbers, which are used as a starting point 
for the general case in the 0(3) group. Therefore, we 
use an indirect method, initiated by Andrews and 
Gunson5 and developed by Ferretti and Verde.s 

We begin by introducing notations and conventions. 
The angular momentum j is defined through the Casi
mir invariant Q of 0(2,1) 

Q = J~ + J: - J: = -(j + !)(j - i), 

where J; is the ith infinitesimal generator of 0(2, 1). 
The quantum number j differs from the corresponding 
0(3) quantum number by !; the definition used here 
has the advantage that the Legendre transformation 
involves replacing It by - ji' The representation of 
0(2, 1) is given6•14 by 

d ;(z) = (r(t - j + v)r(! + j + V))! 
vI' rei - j + ,u)r(i + j + ,u) 

x (_2_)!(V+Il)(Z - l)!(V-Il) 1 
Z + 1 2 r(v - ,u + 1) 

x 2Fl(i + j -,u,! - j -,u; v - j -,u; 

v -,u + 1; t(l - z». (1) 

The principal sheet in the j plane is defined by requiring 
that dv/(z) be positive for large and positive j. Thus, 
dVl'i(z) has cuts along the real axis whose positions 
depend on the relative values of v and ,u. With this 
convention, one has 

(2) 

For v > ,u > 0, all the factors in (1) are finite, but 
some of these factors may be divergent for other 
cases. However, one may take a limit as j approaches 
an integer or a half-integer and, by using the well
known transformations of hypergeometric functions, 
one finds that the product on the right-hand side of 
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(1) is always finite. The results are 

d~'-/l (z) = ( -lY-/ld./(z), 

and 
d/l/(z) = (-l)v-/ld./(z), (3) 

d~/l-v(z) = dv/(z). 

Usually, these relations are quoted for v> ft > ° 
and used to extend the definition of the representation 
function dv/(z) to other cases. In the sense of the 
limiting process mentioned above, the relations (3) 
are valid for any integral v and ft. When some factors 
in (1) are zero or infinite, it is always implied that one 
takes the limit as j approaches an integer or a half
integer. 

Following Bargmann,14 one has, for the continuous 
series, 

Rej=O, v,ft=0,±1,±2,"', (4) 

for the positive discrete series, 

j = t,!, i,"', 
v, ft = j + t,j + !, ... , (5) 

and for the negative discrete series, 

j = t, t, i,"', 

For the discrete series, we have 

i.e., 
-i( ) _ J() aV/l z - aV/l z, 

dv/(z) = 2av/(z). (11) 

In deriving (11), we have used the relation 

F(a, b; c; z) 

rea - c + 1)r(b - c + 1)r(c) -c+l = z 
r(a)r(b)r( -c + 2) 

x 2Fl(a - c + 1, b - c + 1; -c + 2; z), 

for negative integral c. 
The CO coefficient C(juh,ja; VI' V2) of 0(2,1), 

like that of 0(3), should satisfy the following condi
tions: 

(a) Clebsch-Gordan series: 

d~~/lI(Z)d~:/l2(Z) = I C(jI' j2, ja; VI' v2)a!!/l3(z) 
i3 

X C*(juj2,ja;ftI,ft2)' (12) 

", ft = -j - t, -j - t, .... 

where I means that one sums over all the discrete 
series and integrates over all the continuous series 
that occur in the reduction of the two principal series 
A and j2 . From the conservation of magnetic quantum 

(6) number, one has "3 = VI + V2 and ft3 = ftl + ft2' 
The orthogonality relation is 

[00 dzd i*(z)d i'(z) = b(j, j') 
Jl V/l V/l 1J(j) , (7) 

where 

b(j,j') = b(ij - ij'), for continuous series j and j', 

= bii" for discrete series j and j', 
= 0, for one continuous series and 

one discrete series, 
and 

1](j) = 2jtan 7T(j - ft), for the continuous series, 

= 2j, for the discrete series. (8) 

The analytic continuation for 11 - zl > 2 of the 
representation function dv,.i(z) can be expressed as 

dv/(z) = av/(z) + aV/l-i(z), 

where av,.i(z) is defined as 

a i(z) == __ 7T_(r(t- j + ,,)f(t + i + V»)! 
V/l sin 27Tj r(t - j + ft)r(t + j + ft) 

x (~)-1(v+/l)(_2 )1+1 
z-l z-1 

(9) 

x [r(t - j - ft)r(i - j + ,,)r(2j + 1)]-1 

x 2FI(! + j - ", i + j - ft; 2j + 1; _2_). 
l-z 

(10) 

(b) Recursion relation: 

[a + il + vI)(! - il + "1)(! + i2 - v2)(! - i2 - "2)]1 

X C(ji ,i2 ,ia; "1 + 2, "2 - 2) 

+ [(I + it + vI )(! - A + VI) 

+ (l + i2 - v2)(! - i2 - V2) 

- (t - is + va)(! + ia + "a)]! 

x C(jl,i2,ia;"1 + 1, V2 + 1) 

+ [(! + i1 + "1)(! - jl + VI) 

x (t + i2 - "2)(l - i2 - "2)]! 

X CUI ,i2 ,is; V1V2) = 0, (13) 

for both continuous and discrete series. 
(c) Orthogonality and normalization condition: 

! C*(ji ,j2 ,ja; "1' "2)C(ji ,i2' j~; VI, V2) = (j(j~, ia), 
VI 

(14) 

for fixed "a and V2 = Va - 'PI' The summation I for 
'PI means that one sums over all the possible values of 
VI such that VI' V2' and Va are in the spectra of the 
magnetic quantum numbers of the UIR's A , j2' and 
ia, respectively, as stated in Eqs. (4)-(6). 

These three conditions are sufficient to determine 
the CG coefficient up to a phase factor which could be 
a function of the ji' but they are not all necessary. If 
the CG coefficient does not have multiplicity of order 
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two, the first condition is enough. In order to remove 
those phase factors which depend on the it , one must 
introduce the continuation condition for the CG 
coefficient. That is to say, the CG coefficient for all 
cases can be expressed by one analytic function. It is 
because the nonconstant phase factor in the CG 
coefficient including the discrete (or, alternatively, 
the continuous) series, when it is continued to the 
domain corresponding to the continuous (or, alterna
tively, the discrete) series, is no longer a phase factor 
and, thus, should be omitted. The CG coefficient for 
three continuous series has multiplicity two; one 
therefore requires the third condition to obtain the 
individual coefficients, as is explained later. The 
second condition may be taken as a consistency 
condition. Similarly, the second and the third con
ditions may be used to determine the CG coefficient. 
We use the former method. 

The CG series for two continuous series il and i2 
with positive magnetic quantum numbers has been 
worked out by Ferretti and Verde.s Since our expres
sion is somewhat different from theirs, we derive it 
briefly in order to show how the difference occurs. 

Using the Burchnall-Chaundy formula,I5 

2Fl(a, b; c; x) 2Fl(rx, {3; y; x) 

= i (a)ib)n(Y)n 

n=O n! (cMc + y + n - 1)n 

x aF2(rx,1 - c - n, -n; y, 1 - a - n) 

X aF2({3,1 - c - n, -n; y, 1 - b - n)xn 

X 2Fl(a + rx + n, b + f3 + n; c + y + 2n; x), 

(15) 

where 

rJ.(j, 'II) = [f(t - j + 'II)!ret - j - 'II)]!-, 

W(j1 ,j2 ,js) = [f(t + A + j2 + js)f(t - jl + j2 + fa) 
x ret + j1 + j2 -is) 
x f(t - j1 + j2 - ja)]!, 

and 

K(j, 'V) == K(j1' j2, js; 'Ill> '11 2) 

= (Sin 71(1+ i1 +'111) sin 71(t+j2+'112) sin 71(t+ja-'IIa»)!-. 
sin 7T(! + j1) sin 7T(!+ j2) sin 71(t+ j3) 

(19) 

The Thomae-Whipple function F1).(0.45) is defined as 

F1)vC0.45) == sF2(t + j1 + j2 - j3'! ...;.. j1 + j2 - p, 
! + j2 - '112 ; 1 + j2 -is + 'VI; 1 + 2jz) 

x [f(t + is + 'Va)f(l + j2 - ja + '111) 

x f(l + 2jz)]-1, 

where aF2 is the generalized hypergeometric func
tionl6 •17 with unit argument. It is invariant under 
exchange of j1 to - j1 or ja to -is, or both. The G 
function has a one-over-square-root singularity at 
ia = (Js)n via W(j1 ,j2 ,j3)' so the product of two G 
functions has simple pole, and the coefficient en is the 
residue at is = (j3)n' In deriving (16), we have used 
the relation 

F1)_I'(O) = (_I)hit+i2-u3)" 

x r(t - j1 + fll)r(l + (ja)n + fla) F (0) 
ret - j1 - ,u1)r(! + (jS)n - ,ua) 1)1' ' 

where (a)n = rea + n)!rea), etc., one obtains, for which can be proved from the definition of F1).(O) 
and the relation Vi> ,ui > 0, 

where (js)n = ! + jl + j2 + n, and j1 and j2 are in the 
continuous series, i.e., they are pure imaginary. The 
coefficient en is written in terms of the product of two 
G functions, 

en = -2(j3)! Res {G(j, 'II)G(j, -,u)}, (17) 
i.=($.) .. 

with the G function defined as 

G(j, 'II) == G(jl,j2,jS; 'Ill' '112) 

== 71!rx(j1' Vl)rxU2, V2)rJ.(-ja, Vs)wUl,h,j3) 

x K(j, v)F1).(0.45)/r(1 - j2 + '112) 

X [sin 271j2]*' (18) 

ret + i - ,u)r(! - j + fl) 
r(t + j)r(t - j) 

= __ r....:..!(l:"",,+",-,,-,,-j)r---,(,-,,-! _-~j)'--_ 
ret .1. j + fl)r(t - j - fl) 

One notes that the G function here is different from 
the Wigner coefficient defined by Ferretti and Verde 
by a phase factor K(jl ,j3 ,j3; VI' V2)' The sine functions 
in (18) and (19) and in the rest of this paper are only 
symbols to represent the inverse of the product of two 
y functions. Whenever one considers the phase factor 
for an expression involving sine functions, one must 
investigate the phase factor of the y functions through 
the relation 

sin 71G + j + n) = 71/f(i + j + n)r(! - j - n). 

(20) 
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This process fixes the phase factor of the expression 
uniquely. In this sense, one has, for Re ji ~ 0, 

K(j1' j2, ja; '111, '112) = 1, 
K(-j1,j2,ja;'II1,'II2) = (-1)"1, (21) 

K(j1, -j2,ja; 'Ill' '112) = (-1)"1, 
and 

From Eqs. (18), (19), and (21), it follows that 

G(jl'j2 ,ja; VI' '112) = G( -j1 ,j2 ,js; 'PI' '112) 

= G(-j1,j2' -ja;V],V2) 

= G(jl ,j2' -ja; 'PI' '112), (22) 

These invariance properties are different by a phase 
factor from the Wigner coefficient in Ref. 8, because 
of the additional factor K(j, v) in our definition. These 
properties are important to prove the positivity of the 
CG series, as we discuss later. 

The product G(-j, lI)G(-j, -fl) has no poles at 
ja = (ja)n; one may replace (17) by 

en = -2(2ja)~ Res [GU, 'P)GU, -fl) 
j3=(;.)" 

+ G(-j,v)G(-j, -fl)]. (23) 

FIG. I. The contour of the integral with 
1m i1 > 1m j~ > 0 for the case in which jl 

j I + j 2 and ja are both in the continuous series. 
The contours Yl and Y2 enclose the con-
tributing poles of G(j, v)G(j, -p,), and 
those for Ys and Y4 enclose the poles of 
G( - j, v)G( - j, - p,). These four contours 
become a single one by being connected at 
infinity, as shown in this figure. Similar 

j 1- j2 figures can be obtained for the cases 
Imjl >-Imja > 0, 

-Imjl > ±Imh > 0, 
and 

0< ±Imh < ±Imja. 

-j + j 
I 2 

. . 
-J I - J 2 

Changing the summation in (16) into a contour 
integral and performing similar manipulations with 

a;"~l (z)a!:"I(z) , a!~"l (z)a~2~2(z), and a~1~1(z)a~:;2(z), 
one has 

dt:"l(Z)d!:",(z) 

= i 1 dja(2ja) tan 1TUa - fla) 
~1+Y2+Y3+Y4 

X [GU, v)G(j, -fl) + G( - j, lI)G( - j, -fl)]at:"aCz), 

(24) 

by use of (9), where the contours enclose the poles 

and 

ja = ! + A + j2 + n, 

ja = ! + jl - jz + n, 

ja = t - A + j2 + n, 

(25) 

ja = ! - jl - j2 + n, for 11 = 0, 1, 2, ... , 

as shown in Fig. 1. Investigation of the asymptotic 
behavior in the ja plane shows that a Sommerfeld
Watson transform is possible. Hence, after deforming 
the entire contour onto the imaginary axis and picking 

1m jl> 1m j2 > 0 
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up the pole terms, one hass 

d~~!ll(Z)d!:!l'(z) 

= - (iOOi dja(2ja) tan 7T(ja - fta) 
JOi 

x [G(j, y)G(j, -ft) + G( -j, y)G( -j, -ft)]d;:!l'(z) 
[!l.-!] 

+ I 2ja[G(j, y)G(j, -ft) 
i_=! 

+ G( - j, y)G( - j, -ft)]d;:!l'(z), (26) 

This is the CG series for the product of two con
tinuous series jl and j2' The two terms in the brackets 
in the first term of (26) cannot be separated into two 
factors; one depends on the magnetic quantum 
numbers Yi and the other on the fti . The fact that they 
cannot reflects that the CG coefficient for three 
continuous series has multiplicity of order two, as 
proved in the literature.s Thus, the ja spectrum con
sists of two continuous series and one positive discrete 
series. Comparing (26) with (14), one has 

CI(j, y)Ci(j, ft) + C2(j, y)C:U, ft) 

= 1j(ja)[G(j, y)G(j, -ft) + G( - j, y)G( - j, -ft)] 

(27) 
for the continuous series ja, and 

C(j, y)C*(j, p) 

= 1j(ja)[G(j,y)G(j, -ft) + G(-j, y)G(-j, -ft)] 

(28) 

for the positive-discrete series ja. Before identifying 
the CG coefficient, we must study the properties of the 
G function. 

III. THE G FUNCTION 

Whipple and Thomaeis investigated the relation
ships among the Thomae-Whipple functions Fp(l; 
m, n), which are defined as 

Fi/; m, n) == [f(ocghj)f(,Bmt)r(,Bnl)]-1 

x aF2(OCgmn , OChmn ' oc jmn ; Pml' Pnt), (29) 

where g, h, j, I, m, and n take 0, 1, 2, 3, 4, and 5 

permutatively. The parameters OClm .. and Pm .. are 
defined as 

IX /mn = ! + Yl + Ym + Yn 
and 

Pmn = 1 + Ym - Y .. (30) 

for any Yi' i = 0, ... ,5, with the restriction 

(31) 

The convergence condition for F'D(/; m, n) is RI(lXghj) > 
O. ThomaelS showed that Fp(l; m, n) = F'D(I; m', n') 
for any combination of I, m, n, m', and n'. The 
Thomae-Whipple function F'D(I; m, n) is thus inde
pendent of m and n and may be denoted by F'D(I). 
Hence, there are ten representations for Fp(l) obtained 
by permuting m and n; each has a different conver
gence domain and thus is useful for continuation. For 
our purposes, we express the Yi in terms of the 
angular momenta j; and the magnetic quantum 
numbers Yi. These relations are 

and 

3yo = -3j2 - 2YI - Y2, 

3YI = 3jl + YI + 2Y2' 

3Y2 = -3jl + YI + 2Y2, 

3ys = 3ja + YI - Y2' 

3y" = -3ja + YI - Y2, 

3ys = 3j2 - 2YI - Y2' 

(32) 

where the j; may be taken as complex numbers. The 
relationships between the set (lXlmn , Pm .. ) and the 
set (j, y) are set forth in Table I. In this connection, 
the Thomae-Whipple function F'D(l) may be repre
sented by Fpv(l) to emphasize that it depends on the 
triplet (YI' Y2, va). By (32), we see that exchange of 
the indices 1 and 2 (or 3 and 4) is equivalent to the 
replacement of A by - jl (or ja by - j3)' Hence, Fp.(O) 
is invariant under change of sign of jl or js or both. 

Besides, there are three-term relations for F'D.(I) , 
which are collected in Bailey's and Slater's books. IS 

TABLE I. The relationships between the set (O:,.m.n, Pm,,) and the set (j, v). 

0:011 = ! - j. + V. 

0:013 = ! + h - h + h 
O:ou=!+h-h-j. 
O:ou = ! + h - 'Ill 

1X0 •• == ! - h - h + j, 
flOl = 1 - jl - h - v, 
Po. ='1 + h - j. - v_ 
flos = 1 - h - j. - 'Ill 

PO& = 1 - h + j. - 'Ill 

0: •• 4 = ! - jl - j. - j. 
0: ••• = ! - h - 'Ill 

0:0.& = ! - j. - v. 
1X •• 6 =! +j. - v. 
0:0&5 =! -j. - v, 
fJ05 = 1 - 2h 
fJl. = 1 + 2h 
f313 = 1 + h - j, + V. 
P14 = 1 + h + jo + v. 

0:12 , = ! + j. + 'Ill + V. 

0:124 = ! - j. + v, 

1X12. = ! + j. + V. 

0: 134 = ! + h + 'Ill 

1X135 =! + h + j.'+j. 
fJn = 1 + h - j. + '113 

fJ •• = 1 - h - ja + v. 
f3 .. = 1 - h + j. + v. 
13 •• = 1 - jl - h + v. 

lXu. = ! + h + j. - j. 
0:.34 = ! - h + 'Ill 

1X235 = ! - h + j. + j, 
0: ... = ! - jl + j. -j. 
0:045 = ! + j. - v. 
fl.4 = 1 + 2ja 
POS = 1 - j. + ja + 'Ill 

fJ4. = 1 - j. - j. + 'Ill 
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Many relations between the G functions can be 
derived by means of them. One of the important 
relationsS is 

X sin 1/"(! - A + js - js) sin 1/"(! + j2 + "s) 

X sin 1/"(! + j2 - "2)]t 
X [sin 21/"j2 sin 21/"(1 + 2ja) 

G(j, v) = a(j, v)G(j, -v) + b(j,v)G(-j, -v), (33) 

where the coefficients a(j, v) and b(j, v) are defined as 

a(j, v) == a(j1,j2,ja; VI> v2) 

X sin 1/"(1 + h + VI) sin 1/"(t + A - VI) 

X sin 1/"(t + ja - "a) sin 1/"(i + js + "a)]-i. 
(35) 

and 

== [sin 1/"(t + j1 + h - js) 

X sin 1/"(1 + j1 - j! + js) sin 1/"(* + j2 - V2) 

+ sin 1/"(t + js + va) sin 21/"j! 

X sin 1/"(1 - j! + ja - VI)] 

X [sin 1/"(t + js - va) sin 1/"(1 + h - VI) 

X sin 1/"(2h + l)]-lK(k, -v)/K(j~ +v) (34) 

For particular values of the h, the a(j, 11) and b(j, ,,) 
may take simpler forms. One may easily show that 

a( -j, v) = -a(j, v), b( -j, v) = b(j, 11), 

a(j, -v) = a(j, v), b(j, -v) = b(j, v), (36) 

and 
[a(j, V)]2 + [b(j, V)]2 = 1. 

b(j, v) == b(jl,h,ja; VI' V2) The other important relationS is 

= - [sin 1/"(l + j1 + j2 + js) 

X sin 1/"(t + h + js - js) 

X sin 1/"(1 - j1 + j2 + js) 

G(h,jl,ja; V2' VI) = c(j, v)G(j, v) + d(j, v)G(-j, v), 

(37) 

and 

where 

c(j, v) == C(j1,j2,ja; VI' v2) 

= _ (Sin 1/"(! - 11 + 12 + 13) sin 1/"(! - jl + 12 - 1a»)! 
sin 21/"j1 sin 21/"j2 

d(j, v) == d(j1,j2,ja; VI, V2) 

= _ (Sin 1/"(t + jl + j2 + ja) sin 1/"(t - j1 - j2 + ja»)! K(j, +v) 
sin 21/"j1 sin 21/"(1 + j2) K(j, -v) , 

(38) 

with [c(j, V)]2 + [d(j, V)]2 = 1. The relations (33) and (37) show that G(j, v)G(j, -f.1,) + G( -j, v)G( -j, -f.1,) 

is invariant under the exchange of Vi and f.1,i or h and is, or both. For particular values of the ji' the three
term relations reduce to two-term relations. We collect some of them that will be useful later. For the case 
in which! ±ja - Va equals a negative integer or zero, one has 

and 
a(j,lI)G(j, -v) + b(j, v)G( -j, -v) = 0 

a(-j, v)G(-j, -v) + b(-j, v)G(j, -v) = o. 

For the case in which! + j1 - VI is negative integer or zero, one has 

and 

G(' .. ) ( sin 21/"j2 )! 
12,h,ja;V2,V1 = , (' ' , ')' (1 ' , ')' 2 ' sm 1/" ~ + 11 - 12 + Js sm 1/" "2 - 11 + 12 + Js sm 1/"h 

sin 1/"(! + ja - va) sin 1/"(1 + j1 + VI) (. ) 
X G j,-V 

sin 1/"(} + 12 - v2) 

G(j2, 11' 1a; -V2, -VI) = [sin 1/"(t + j1 - VI) sin 7T(1 + j1 + VI) sin 1/"(1 + ja + va) sin 1/"(1 + 2j2)]! 

X [sin 7T(t + ,it + j2 + 13) sin 7T(t + j2 + j1 - ja) sin 7T(t + j2 + v2) 

X sin 1/"(! + j2 - v2) sin 7T(1 + ja - va) sin 27Tj1r! 

x sin 7T(1 + j1 + j2 - va)G( - j, -v). 

(39) 

(40) 
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For the case in which i ± j2 - 'V2 equals a negative 
integer or zero, one has 

G(j, 'V) = - sin 77{i - ja + 'Va) G(j -'V) (41) 
sin 7T(1 - jl - j2 + 'Va) , 

and 

for larger/jsl, Reh > 0 and Re (i + jl + j2 + ja) > 0 
and with other parameters fixed. Similarly, the 
asymptotic behaviors in ji or j! of the G function can 
be obtained: 

for large UII and Re h > 0 and with other parameters G( -j, -'V) = e-hiG(j, -'V), 

G( -j, 'V) = ehiG(j, 'V). (42) fixed, and 
G(j; 'V) '" 0«(j2)-V1-VS-l) (47) 

From (42), we see that GU, 'V)G(j, -fl) is invariant 
under change of signs of all ji' The limits of the G 
functions for two or more angular momenta in 
discrete series can be obtained from the above 
relations. 

We are now at a stage where we can find the 
asymptotic behavior of the G function in ji or 'Vi for 
other parameters fixed. The 'Vi are always taken as 
integers, half integers, or zeros. To derive the asymp
totic behavior for large Ijal, we may take, for example, 
F7).(O, 24) for F7)v(O) with Re (t + h + j2 + ja) > O. 
The generalized hypergeometric function SF2 is 
related19 to the hypergeometric function 2Fl' the 
asymptotic behavior of which can be obtained. For 
example, we have20 

2Flet - ji + 'VI' t - ja + 'Va; 1 - jl + j2 + 'Va; s) 
,....., 0« -jssrhh-Vl) (43) 

for large Ijsl and Re (jss) > 0, and with other param
eters fixed. From (43), one obtains the asymptotic 
behavior in h of the generalized hypergeometric 
function 

aF2(t - ja + 'Vs, t - jl + 'V1' t - ji + j2 - js; 

1 - jl + j2 + 'Va, 1 + j2 - ja + 'VI) 
,....., 0« - jar!+h-Vl). (44) 

Thus, the asymptotic behavior in h of the G function 

for large Ihl and Re j2 > 0 and with other parameters 
fixed. In obtaining these formulas, we have used the 
asymptotic behavior (44) in h of the G function in 
order to derive the CG series for two continuous 
series hand h. The asymptotic behaviors in the j; are 
particularly imporfant for performing the Sommer
feld-Watson transform in the ji plane. 

The asymptotic behaviors in 'VI (or, equivalently, 'V2) 

or 'Va can be obtained in a different way. For large 
positive 'VI' the functions Fnv(4.23) and Fnv(3.24), 
defined respectively as F7)v(4.23) and F7)v(3.24), with 
ji and 'Vi replaced by - ji and - 'Vi' have the following 
simple asymptotic behaviors: 

Fnv(4.23),...., [ret - jl + 'VI) 

x r(I + j) - h + 'V) - 'Va)r(1 - 2h)]-1 
and 

FnvC3.24) ("Oo.J [rCi - A + 'VI) 

x r(l + jl + ja + 'VI - va)r(l + 2ja)t1. 
(48) 

Using a three-term relation18 

sin 7T{343 F 1'.(0) 
7T rClXo4a) 

FnvC4.23) 
=----'!.!.~~--

Fnv(3.24) 

is one can obtain, by manipulating y functions and by 
(45) taking the Stirling approximation, 

G(
') 1 (. ) (. . . )(Sin 7T(t + ji + 'VI) sin 7Tet + j! - 'V2»)! 
J; 'V ,...., -! IX - Ja, 'Va W 11,12,]a 

(7T) sin 27Tj2 

X ( ('VI)-!+;ar(2ja) + (. ~ _ . ») 
r(t + ja + 'Va)r(! + jl + ja + ja)r(! - ji + j2 + ja) 13 13 . 

(49) 

for large positive 'VI and Re (l - jl + 'VI) > O. Similarly, one can obtain 

( .) 1 (. ) (. . .)( sin 7T(t + j2 + 'V2) )! 
G),'V ,-....,-!Qt;-Ja,Va W h,J2,}s 

(7T) sin 27Tj! sin 77{t + ji - 'VI) 

X ( sin 7T(1 + j2 - ja + 'V1)r(2ja)( -'VI)-!+ia + (. ~ _ . ») 
ra + jl + j2 + ja)r(! - jl + j2 + ja)r(! + ja + 'Va) Ja Ja 

(50) 
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for large negative 'JI1 and Re (t - jl - 'JI1) > 0, 

G( ') 1 ( . ) (. . . )(Sin 7T(t + j2 - 'JI2) sin 7T(t + ja - 'JIa»)! 
J,'JI "-'--!r:t.h,'JI1 Wh,12,Ja 

(7T) sin 27Tj2 

x ( ('JIar
tH

'r(2j1) + ( . ~ _ . ») 
ret + jl + j2 - ja)f(t + jl + j2 + ja)r(t + jl - 'JI1) h 11 

(51) 

for large positive 'JIa and Re (t + jl + j2 - h) > 0, and 

. 1. .., ( sin 7T(t + j2 - 1'2) )! 
G(j, 'JI) "-' -t r:t.(h, 'JI1) w(j 1 , 12 ,]a) 

(7T) sin 27Tj2 sin 7T(t + js + 'JIa) 

X ( sin 7T(1 - jl + j2 + ja)f(2jl)( -'JIar
t
+

i
' + ( . ~ _ . ») 

r(t + jl + j2 - ja)r(t + jl + j2 + ja)f(t + jl + 'JI1) h h 
(52) 

for large negative 'JI3 and Re (t + j2 - 'JI2) > 0. The asymptotic behavior in 'JI2 is equivalent to that in -'JI1 • 

The asymptotic behaviors of the G functions, such as G( -j, 'JI) and G( -j, -'JI), can be obtained by proper 
replacements in the expressions (49)-(52). 

Behaviors of the G functions, when the ji take any of the three principal series, are tabulated in Tables II-IV. 

TABLE II. Behavior of the G functions for all ji taking the values corresponding to the VIR of 
0(2, 1) with v, > 0, v. > 0, and Va > O. The symbols F, Z, and P indicate finiteness, zero, and 
pole, respectively. The supercripts on Z and P represent the order of zeros and poles, respectively. 

h j. ja G(j, v) G(j, -v) G( -j, v) G(-j, -v) 

cont. cont. cont. F F F F 
cont. cont. discrete zt pI; Z! pI; 

cont. discrete cont. F F F F 
cont. discrete discrete Z! pI; zt pI; 

discrete cont. cont. Z! pi zt pi 
discrete cont. discrete Z P Z P 
discrete discrete cont. 
discrete discrete discrete F F F F 

TABLE III. Behavior of the G functions for all jk taking the values corresponding to the VIR of 
0(2,1) with v, > 0, -v. > 0, and v. > O. The symbols and superscripts have the same meanings 

as in Table II. 

h j. iz G(j, v) G(j, -v) G( -j, v) G(-j, -v) 

cont. cont. cont. F F F F 
cont. cont. discrete Zl pI; zt pl 
cont. discrete cont. F F F F 
cont. discrete discrete zt Z! Zl Zi 
discrete cont. cont. Z! pi zt pi 
discrete cont. discrete Z P Z P 
discrete discrete cont. zt pi zt pi 
discrete discrete discrete 

TABLE IV. Behavior of the G functions for all j. taking the values corresponding. to the VIR of 
0(2, 1) with -v" v. > 0, and Va > O. The symbols and superscripts have the same meanings as 

in Table II. 

h j. iz G(j, v) G(j, -v) G(-j, v) G(-j, -v) 

cont. cont. cont. F F F F 
cont. cont. discrete Zi pi Zi pi 
cont. discrete cont. F F F F 
cont. discrete discrete zt pi zt pi 
discrete cont. cont. pi zt pi zt 
discrete cont. discrete F F F F 
discrete discrete cont. pi zt pi zt 
discrete discrete discrete 
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IV. CLEBSCH-GORDAN COEFFICIENT FOR 
1'i > fti > 0 

Since the CG coefficient for three continuous 
series has multiplicity of order two, we cannot 
determine it uniquely from (27) for this case. However, 
we are able to calculate two mutually orthogonal 
CG coefficients. 

From the recursion relational between the general
ized hypergeometric functions, one can prove that the 
G function G(j, '1') satisfies the recursion relation (13) 
of the CG coefficients. Observing that the coefficients 
in the recursion relation are even functions of the ji , 
one sees that G( -j, '1') also satisfies the recursion 
relation. Hence, any linear combination of G(j, '1') 
and G( - j, '1'), with its coefficients as functions of ji 
and 'l'a only, satisfies this recursion relation, and so do 
G(j, -'I') and G(-j, -'I') by (33). This fact strongly 
suggests that the continuable CG coefficients are 
linear combinations of G(j, '1') and G( -j, '1'). 

We now begin to check the orthogonality and 
normalization. For pure imaginary ja, the condition 
(14) has to be replaced by 

lil1l .l C*(jl , J2' ja; '1'1' 'l'2)C(jl, ja, j~; '1'1, '1'2)'1'1-). 
),-+0 v1 

= o(ija - iJ~), (53) 

since C*(j, v)C(j, '1') has oscillating terms for this case. 
From (49) and (50), one has 

lil1l .L G(j1, j2' ja; '1'1' '1'2) 
),-+0 V1 

X G(jI,ja,j~; -'1'1 - 'l'2)rj{ja)'I'1-). 

= o(ija - ij~) + o(ija + ija) 
and 

lim+.L G(j1,j2,ja; '1'1, '1'2) 
),-+0 V1 

X G( - j1, - j2, -ja; '1'1' 'l'2)'Y}(ja)'I'1-). = 0 (54) 

for pure imaginary ja. In deriving these relations (54), 
we have used the facts that (a) the inner product of 
two eigenfunctions with different eigenvalues ja and 
j~ of the difference equation of second order vanishes, 
(b) the ordinary Riemann' function '(x) has a pole 
at x = -1 of unit residue, and (c) the singular part 
of the factor (ij~ - ija + .1.)-1 has the same effect as 
7T(j(ij~ - ij3)' However, the G function G(j, v) is not 
the complex conjugate of G(j, -v) for the case of 
three continuous series. One has to introduce new 
expressions which are linear combinations of G(j, -v) 
and G(j, v) and which are such that the orthogonality 
and normalization conditions are satisfied. One set of 
the candidates is the pair [C1(j, v), C2( j, v»), with 
CI(j, v) and C2(j, v) defined as 

CI(j, v) == C1(A, j2' ja; '1'1' '1'2) 

== [1](J3)/b(j, 'I')]lG(j, -v) 

and 
Ca(j, '1') == C1CA. ja, js; '1'1' ')12) 

== [1](ja)/b(j. v)]iG(j, ')I). (55) 

From (33), (53), and (54), one can easily show that 

I C;*UI,ja,ja; '1'1' 'l'2)C;(jl,ja,j~; '1'1' 'l'a) 
V1 

and 

CIU, v)C:U, p,) + CaU, v)C:U, fl) 

= 'r](ja)[G(j, v)G(j, -fl) + G( -j, v)G( -j, -fl). 

(57) 

This pair of the CG coefficients satisfies all three 
conditions stated in Sec. II. Nevertheless, unitary 
transformation in the (C1 , Ca) space preserves the or
thogonality, the normalization, and the quadratic 
form QU, v)C1(j, f.l) + C:(j, v)Ca(j, f.l). Infinite num
bers of the pairs satisfy these conditions. One needs one 
more condition to fix the pair of the CG coefficients. 
The continuation condition is just what we require. 
We have to find two CG coefficients which are 
orthogonal to each other for the case of three con
tinuous series; one of these must give the CG coeffi
cients when it is continued to the values of jt 
corresponding to other cases while the other must 
vanish. This can be achieved only after one works out 
the CG coefficient for the other cases. In this section, 
we assume that Vi and f.li are integers or zeros with the 
restriction Vi > f.li > o. 

For positive discrete is, we expect that the right
hand side of expression (28) can be factorized. In this 
case, one has 

G(j, v),...; Zl, G(j, -v),...; pl, 

G(-j,v),...;Zl, G(-j, -v),...;p!, (58) 

where Z and P indicate zero and pole, respectively. 
The superscript represents the order of the pole or 

. zero. From (39) and (36), one can derive the equation 

1](Ja)[G(j,v)G(j, -f.l) + G(-j,v)G(-j, -f.l) 

= 'r](ja)G(j, -v)G( -j, -f.l)/b(j, v), (59) 

where b(j, v) can be shown to be real, i.e., 

b(j, v) = [b(j, '1')]*. (60) 

From (22), one can identify the CG coefficient 

C(j, v) = [1](J3)/b(j, v)]iG(j, -v). (61) 

It is interesting to note that [b(j, v)]-i may be 
imaginary for some j3 because of the factors like 
[sin 7T(t + j3)]1. However, this factor is compensated 
by the factors [ret - j3 - va)]! and K(j, v) in G(j, v). 
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Thus, w~ have 

C*(j, v) = ['Y/(js)/b(j, v)]lG(_j, -v). (62) 

Comparing (55) with (61), we see that C(j, v) and 
Cl(j, v) have the same functional form except that 
the factor 'Y/(ja), which depends on whether the j3 is in 
continuous series or in discrete series, is different in 
the two cases. The other CO coefficient C2(j, v) 
vanishes for the discrete j3 case. 

In the case in which A and j2 are in the continuous 
series and the positive discrete series respectively, one 
can derive the CG series by a similar method. The 
function G(j, v)G(j, -fl) has two series of poles in 
the right-half ia plane, as shown in Fig. 2, instead of 
four series, as above. Thus, one does not need to add 
a vanishing term Res [G( -j, v)G( -j, -fl)] to 

ia=(ja>n 
expression (17). Performing a Sommerfeld-Watson 
transform, one has 

d;~I'/z)d~:I'a<z) 

= -2 i~\ dja1](ja)G(j, v)G(j, -fl)d!!/liz) 

[/la-!] 

+ I 21](ja)G(j, v)G(j, -fl)d~:I',(z). (63) 
ja=! 

In deriving (63), (42) is used. The ja spectrum is the 
same as in the above case. From (12), (41), and (63), 
one has 

CU, v)C*(j, fl) 

__ 21](ja) sin 17(! - ja + V3) G(' _ )G(' _ ) 
- j, v j, fl, 

sin 17(1 - j1 + j2 + va) 

FIG. 2. The contour of the integral with 
1m j, > 0 for the case in which j, and j2 are 
in the continuous and the discrete series, 
respectively. The contours 1', and 1'. 
enclose the contributing poles of G(j, v) X 
Gfj, - It) in the right half-plane. These two 
contours become a single one by being 
connected at infinity, as shown in this 
figure. A similar figure can be obtained for 
Imj, < O. 

(64) 

from which one identifies the CG coefficient 

C(j,lI) = C*(j, v) 

== (_ 2:Ua) sin 7T~i + la + va»)! G(j, -v). 
sm 7T(t - 11 + 12 + V3) 

(65) 

If ja is in the discrete series, the factors like 

are compensated by [r(t + ia - V3)]! and K(j, v), 
and the factor ( -1 )-!+i2+va from sin 17(t -.it + h + V3) 
is compensated by [r(t - j2 - v2) sin 27Tj2]-! and 
K(j, v). It is obvious now that the presence of the 
factor K(j, v) in (18) removes a phase factor that 
depends on the Vi in the CG coefficient and in the 
CG series. The CG coefficient is different from 
C1(j, v) and C2(j, v) in (55). However, the extra 
degree of freedom which we have observed in deter
mining the CG coefficient enables one to redefine 
it for the case of three continuous series so that it 
satisfies our continuation condition. We redefine it 
after working out the CG coefficient for other combi
nations of jl and h.. 

In the cases in which j1 and j2 are in the discrete and 
the continuous series, respectively, one cannot replace 
the summation in (16) by a contour integral, since 
there are two series of double poles in the j3 plane, 
as shown in Fig. 3. One way to remove this difficulty 
is to exchange the roles ofjl and j2, so that one can use 

(. . . 
~'-------~>~----------', , 

\ 
\ 
\ 
1(1) 
I 
I 
I 

I 
I 

/ 
~------~<:~---------~ 

v ~_. __ .--::::--_. __ __ 

'2 > 
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e---- e j2 

e----e 

the previous method. One then obtains 

dt:1I1(z)dt:lli z) 

= -2 (OOi j dja'Yj(ja)G(j2' j1, ja; v2 , VI) 
JOi 

x G(j2,jl,ja; -P2, -pI)d~:II/Z) 
[1I3-h 

+ j~! 2'Yj(ja)G(j2,jI,ja; V2, VI) 

e 

X G(j2,juja; -P2, -pI)d~:1I3(Z). (66) 

The ja spectrum is the same as in (63), as it should be. 
From (40), (66), and (35), one can identify the CG 
coefficient 

CU, v) = ['YjUa)/b(j, v)]!G(j, -v) (67) 
with 

b(k, v) = . sin 'fTU2 + ja) sin TT( -j2 + ja) , 
2ehlI sin 'fTC! + ja) sin 'fTCl + jI) sin 'fTj2 

if considered in the ja plane. A similar expression can 
be obtained if considered in the j2 plane. As above, the 
factors [sin 'fT(! + jl)]-! and [sin 'fT(! + ja)]-! in (67) 
are compensated by the factors in G(j, v), ifja is pure 
imaginary. This CG coefficient is a continuation of 
CI (j, v), and C2(j, v) vanishes. 

In the case in which bothA and j2 are in the discrete 
series, one has, from (16) and (42), 

d~:IIJz)d!:II.(z) 
[lIa-i] 

= 2 ~ 'Yj(ja)G(j, v)G(j, -ft)d;:lIs(z), (68) 
ia=i+;l+;' 

after discarding the vanishing terms. The j3 spectrum 

FIG. 3. The poles of G(j, v)G(j, -p,) 
with Imjs > 0 in the j. plane for the case 
h andjs in the discrete and the continuous 
series. The circle indicate a simple pole; the 
triangle indicates a double pole. A similar 
figure can be obtained for Imjs < O. 

in this case is well known. 7•9 The CG coefficient can 
be considered as the limiting case of (65) or (67). 

In summary, we have obtained all the CG coeffi
cients for Vi > Pi > O. The CG coefficients for the 
three continuous series has multiplicity two. These 
two orthogonal CG coefficients G(j, v) and CI(j, v) 
are defined in (55). Except for continuous A and 
discrete j2' the CG coefficient for other cases is the 
continuation of CI (j, v). Since the linear ~ombination 
of C1(j, v) and C2(j, ')I) obtained by unitary transforma
tion for the case of three continuous series is also a 
CG coefficient, we can find an expression such that 
the CG coefficient for all cases is equal to its continua
tion. With some calculations, we obtain the following 
two CG coefficients C(j, v) and C'(j, v): 

C(j, v) = ['YjUa)]i{[D(j, v)]-fG(j, -v) 

+ [D(j, v)]iG(j, v)}/(.j2)[b(j, v)] 
and 

C'U, v) = [f}(ja)rt { -[D(j, v)]tG(j, -v) 
+ [D(j, v)-tG(j, v)}/(.j2)[b(j, v)], (69) 

where D(j, v) is defined by 

DU, v) = -bU, v) + ([bU, ')1)]2 + l}i. (70) 

One can see that CU, v) and C'U, v) are orthogonal 
for three continuous series. For all other cases, CU, v) 
reduces to the CG coefficient obtained from the CG 
series, and C'U, v) vanishes, except the two discrete 
i1 and i2 case in which CU. v) and C'(j, v) are degen
erate. Hence. CU, v) and C'U. v) are the required 
CG coefficients. 
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TABLE V. Behavior of a~81' (z) whenja is taken as positive integer. The symbols and superscripts 
3 a have the same meanings as in Table II. 

V3> 0 -va> 0 
va> ja > 0 

fla > ja > 0 F 
fl. > 0 ja > fla > 0 zt 

-fl8> 0 -fls > js > 0 F 
js> -fl. > 0 Zi 

V. CLEBSCH-GORDAN COEFFICIENT FOR 
OTHER CASES 

In the preceding section, we worked out the CG 
coefficients with the restriction that Vi > fti > O. In 
this section, we calculate the CG coefficient for 
arbitrary Vi and fti' Finally, we extend our results to 
the double-valued VIR of SU(1, 1). 

Each representation function d;,.{z) has four kinds 
of representations, as in (3). Hence, first of all, one 
must decide which one should be used in applying 
Burchnall-Chaundy formula (15). For convenience, 
we always choose the expressions (I) and (10) for the 
representation function of the rotation along the y 
axis s~ndwiched by the state vectors with magnetic 
quantum number Vi and fti' irrespective of the relative 
values and the relative signs of Vi and fti' 

From (21), one can easily see that the discrete 
spectrum for is is determined by poles of the integrand 
ia tan 1TjaG(j, v)G(j, -ft)a$:l'a(z). If ji is in the con
tinuous series and j2 in the discrete series, the functions 
F".(O) and Fp_.(O) are finite for any Vi and ft., as they 
are both in the continuous series. If ji is in the 
discrete series and j2 in the continuous series, one 
must derive the CG series by exchanging the roles of 
il and i2 in order to remove double poles which occur 
in the integrand as for the case Vi > fti > O. Hence, 
for all the cases except that of two discrete series, the 
functions F".(O) and F,,_.(O) , as well as W(jl ,j2 ,ja), 
are finite. The order of zeros or poles of the G func
tions can be found in Tables II-IV. For the last case, 
F".(O), F,,_.(O), and W(jl ,j2 ,ja) behave differently for 

ja > Va > 0 -va> ja > 0 ja> -va> 0 

zl F Zi 
Z Zl Z 
zt F Zi 
Z Zl Z 

various relative values and signs of the ii and Vi' We 
discuss this case in more detail. 

The derivation of the CG series can be carried out 
as for Vi > fti > O. The finiteness of the expression 
and the discrete spectrum for i3 in the CG series can 
be determined by using Tables II-V. 

Previous discussions on the normalization and 
orthogonality condition and unitary transformation 
are still valid for arbitrary Vi and fti' In the following, 
we study the CG coefficients for any Vi and fti in four 
cases. 

A. hand h Continuous 

The ja spectra for any Vi and fti are given in Table VI. 
The two orthonormal CG coefficients for three con
tinuous series are the same as in (55). For discrete is, 
the CG coefficient is defined as 

C(j, v) == C(jl ,j2 ,is; VI' V2) 

== [1](ja)/b(j, v)]tG(j, -V'A)' (71) 

where ~A is determined by va~A = IVai. These CG 
coefficients are analytic continuations of one of the 
two CG coefficients in (55). 

B. il Continuous, h Discrete 

The is spectra for any Vi and fti are summarized in 
Table VII. Some spectra in Table VII are missing, 
since there is no discrete series for j2 with two magnetic 
quantum numbers of different signs. We note that 
there is no positive-discrete series in the decomposi
tion of the product of the continuous and negative
discrete series, and no negative-discrete series for 

TABLE VI. The js spectra from the decomposition of the product of two continuous series j. and j. 
for va> O. The positive-discrete spectrum runs from ja = t to ja = m + t, the negative from 
ja = -t to ja = -t - m, where m is the smaller of Iflal and IVai. The symbols c and d indicate 

continuous and discrete spectra, respectively. Similar results can be obtained for Va < O. 

VI, V., va> 0 -V1> Va, va> 0 1'1> -V., va> 0 

fl10 fta, fta > 0 c,d c,d c,d 
-ftl, ft., fl. > 0 c, d c, d c,d 
ft10 -ft., fta > 0 c,d c,d c,d 

-ftl, -ft., -fl. > 0 c c C 

ft!> -ft., fta > 0 c c C 

-ftl, ft., -fts > 0 c c c 
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TABLE VII. The j. spectra from the decomposition of the product of one continuous series it and 
one discrete series j •. The range of the discrete spectrum of js is the same as in Table VI. The 
symbols c and d indicate continuous and discrete spectra, respectively. Similar results can be 

obtained for v. > o. 

ftl' ft. , ft. > 0 
-ftl, ft., ft. > 0 
ftb -ft" ft. > 0 

-ftb -ft., -ft. > 0 
+ftb -ftl, -ft. > 0 

-ftb ft., -ft. > 0 

c,d 
c,d 

c 

continuous and positive-discrete series, even though 
this discrete series is not forbidden by the conditions 
of VIR of 0(2, 1); one can see from Table III that 
in this case G(j, v)G(j, - /l) or G( - j, v)G( - j, - /l) 
vanishes as a double zero. This phenomenon of 
missing spectra also occurs in the decomposition of 
two positive-discrete (or negative-discrete) series; there 
is no continuous spectrum for ja . 

The explicit expression of the CG coefficient for 
any Vi and /li is 

C(j, v) = [-2'f}(ja) sin 7T(t + ja + va)/ 

sin 7T(t - j1 + j2 + va)]! 

X G(j, -V~B)' (72) 

where ~B is defined through V2~B = IV21. This CG 
coefficient is identical to one of the two CG coeffi
cients in (55), if the latter are continued in ji to the 
region corresponding to this case. 

C . .h Discrete, h Continuous 

The ja spectra are given in Table VIII. As in case (B), 
there is no positive-discrete spectrum of ja for the 
combination of one negative-discrete series and one 
continuous series (or no negative-discrete for con
tinuous and positive-discrete). It is necessary to cope 
with the similar missing discrete spectrum in case 
(B), since by exchanging the roles ofj1 andh case (C) 
becomes case (B). The CG coefficient is defined by 

C(j, v) = ['f}(ja)/b(j, v)]!G(j, -v~J, (73) 

c,d 
c, d 

c 

c 
c 
c 

where ~c is determined by V1~C = IV11. Once again, 
this CG coefficient is the analytic continuation of one 
of the two CG coefficients in (55). 

D. A, jz Discrete 

For Vi > /li > 0, we have worked out the CG 
series (68). For many other Vi and /li, there are no ja 
spectra, continuous and discrete, as shown in Table 
IX, because of the condition on the signs of the 
magnetic quantum numbers for the VIR of 0(2, 1). 
The derivations of the CG series for the present case 
are much more complicated for the reasons stated 
earlier in this section. We have divided this case into 
four subcases, according to the signs of Vi and /li. 

If A is in the negative- and j2 in the positive-discrete 
series, one obtains, from (11), (15), and (16), 

dt~,.Jz)d~:I"(z) = I G(j, v)G(j, -/l)(8ja)a~:I"(z). 
;~i1+;.+! (74) 

It is easily checked by using Table X that each term 
under the summation is finite except for Va < - t -
j1 - j2, in which the terms with ja < -Va vanish. 
Equation (74) is therefore not a decomposition into 
VIR's. One can transform it into the required form by 
performing a Sommerfeld-Watson transform. By 
converting the summation into an integral, as shown 
in Fig. 4, one obtains the CG series, similar to that 
in (63). The determination of the discrete spectrum 
depends on the relative values among the ji and the 

TABLE VIII. The}. spectra from the decomposition ?f the product of ~n~ discrete serie~ it and 
one continuous series j. for v. > O. The range of th.e discrete spectrum of /. IS th~ s~me as In Table 
VI. The symbols c and d indicate continuous and discrete spectra, respectively. Slmrlar results can 

be obtained for v. < o. 

VI, V., V. > 0 -VI, V., V. > 0 VI, -V., Vs > 0 

ftb ft. , ft. > 0 c,d c,d 

-ftb ft., ft. > 0 c 
ftl, -ft., ft. > 0 c,d c,d 

-ftb -ft., -ft. > 0 c 
ftb -ft., -ft. > 0 c c 
-ftbft., -ft. > 0 c 
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TABLE IX. The j I spectrum from the decomposition of the product of two discrete series hand 
h for Va > O. The range of the positive- (negative-) discrete spectrum extends from ja = 1- to 
It - j1 + jal. The symbols c and d indicate continuous and discrete spectra, respectively. The 
star * indicates that the negative-discrete spectrum occurs only when the angular momentum of 
the negative-discrete series is less than that of the positive-discrete series, and vice versa. A similar 

result can be obtained for Va < O. 

I'lt 1'2, Ils > 0 
-1'1 , 1'2, Ila > 0 
I'lt -112, Ill> 0 

-l1lJ -112, -1l8 > 0 
Ill' -1l2, -Ila > 0 
-l'lJ 112, -11. > 0 

d 

lIi' By using Tables V and X, we can get the following 
results. 

For jl > j2' one has two classes: 
(a) For -lIa, - fla > 0, one has one negative

discrete spectrum for ja extending from ja = -! to 
j3 = -1 - jl + j2' and one continuous series; 

(b) For other cases, there are only continuous 
spectra. Similarly, for j2 > jl , one has one continuous 
series and one positive-discrete spectrum running 
from ja = t to ja = +t - A + j2 for the case lIa, 
fla > 0 and only one continuous spectrum for other 
cases. 

From the above reasoning, one sees that there are 
no negative-discrete spectra in the decomposition of 
the product of one negative-discrete series and one 
positive-discrete series if the angular momentum of 
the latter is larger than that of the former and no 
positive-discrete spectrum if the angular momentum 

FIG. 4. The contour of the integral for 
the case in which hand j2 are in the 
negative and the positive discrete series. 
The starting point for the contour can be 
determined from Tables V and X. This 
figure is also valid for the case in which 
jl andj, are in the positive and the negative 
discrete series, respectively. 

c, d* 
c,d* 

is less than the former. In a paper on the duality 
theorem for the SU(l, l) group, Tatsuuma22 obtained 
similar results. 

If A is in the positive and h in the negative discrete 
series, one can obtain similar results. This can be 
verified directly by using Tables V and X. It is 
interesting to note that this subcase becomes the same 
as the above if one exchanges the role of jl and h in 
(74) and finally in (63). 

We have worked the subcase in which bothA andjz 
are in the positive-discrete series [see Eq. (68)]. In a 
similar manner, one can obtain the CG series for the 
two negative-discrete series. Again there is only one 
negative-discrete spectrum. 

For all the subcases in Sec. V.D, the CG coefficients 
are the limits of those in Secs. V.B and V.C, as one 
of jl and j2 becomes a half-integer. 

The CG coefficients so far obtained are for the 



                                                                                                                                    

TABLE X. Behavior of the G functions for the case in which j, and j. are in the negative and the positive discrete series, respectively. The symbols and superscripts have the same 
meanings as in Table I. Behavior of the G functions for the case in which jl and ja are i~ the positive and the negative discrete series, respectively, can be obtained by exchanging 

the roles ofh andj •. 

1 + jl + jo > Va -It - h + jal > Va 
Va> 1 + jl + jo > It-h + jol It - j, + j.1 > Va > -It - h + j.1 >t-h-ja -t - h - ja > Va 

Va> 0 -Va> 0 
ja> Va j. < Va j~ > Va j. < Va ja> v. j. < v. j. > -Va j. < -Va j. > -Va j. < -Va j. > -Va h< -Va 

(a) G(j. v) with h > h 

j. ~ t + j, + h pi F pi pi pl pi pI Z 

t + h + jo > h ~ It - j, + hi Zl F z! F F F ZI Zl 

It - h + hi > h > -I! - h + hi z z Zi Z z! F F F 

(b) G(j. -v) withh > jo and G(j, v) withh <jo 

j.~l+h+jo pi F pi pi pi pi pit F 
1 + j, + ja > j. ~ I! - h + hi Zi F z! F F F Zl Zl 

It - h + j21 > j. > -I! - j, + hi F F ZI F Zl F F F 

(c) G(j. -V) withh <j. 

j.~i+h+j. pi z pi pi pl pi pi F 
t + h + h > j. ~ It - jl + hi z! F z! F F F Zl Zi 

11 - h + hi> j. > -Ii - j, + hi F F Zt F Zt Z Z Z 

§ 

~ 
c:: 
0 
I = til -> 
Z 
0 

~ 
> 
Z 
0 
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single-valued representations, i.e., all the Vi and #i take 
integral values or zeros. We show that one can extend 
them to the double-valued representations, i.e., Vi and 
#. take half-integral values. One notes, however, that 
at least one pair of Vi and #i are taken as integers or 
zeros because of conservation of magnetic quantum 
numbers. It is well known that double-valued repre
sentation belongs to the VIR of SU(l, 1), the covering 
group of 0(2, 1). 

From Bargmann's paper,14 one has the double
valued representations of SU(l, 1) for continuous 
series, 

Rej = 0, V, # = ±!, ±i, ... , (4') 

for positive-discrete series 

j = 1,2,"', 

V, # = j + !,j + i, ... , (5') 

and, for negative-discrete series, 

j = 1,2, ... , 

V, fL = -j - t, -j - i, .... (6') 

We observe several facts: (a) The representation 
function dy,/(z) defined in (1) and the G function 
defined in (18) are products of y functions, hyper
geometric functions, or generalized hypergeometric 
functions, the argument of which are quantities like 
2ji' t ±ji ± Vi' t ±jl ±j2 ±ja, 1 ±ji ±jj ± vk , 

etc. These quantities behave as integers or zeros when 
the corresponding ji are in the discrete VIR's, 
whether they are single valued or double valued; (b) 
The poles and the zeros, if any, of a y function, a 
hypergeometric function, or a generalized hyper
geometric function occur only when its arguments 
take negative integral values or zeros; (c) The function 
K(j, v) in the G functions is a phase factor even though 
some of the y functions in it have arguments different 
from the quantities mentioned above. In other words, 
the function K(j, v) does not contribute to the pole 
structure of the G function. From these four facts, 
one sees that one can derive the CG series and thus 
the CG coefficients of SU(l, 1) in the same way as 
those of 0(2, 1). Only one change must be made: The 
range of the positive- (or negative-) discrete spectrum 
of ja, if ja is integral, is changed to begin from 1 (or 
-1) instead of! (or -i). Therefore, our results are 
valid for the group SU(l, 1) also. 

VI. UNITARY REPRESENTATION OF THE 
0(2, 2) GROUP 

Let us define Ji and Ki as the infinitesimal generators 
of 0(2, 2), which keeps invariant the quadratic form 
x~ + x: - x~ - x~. They satisfy the following com
mutation relations: 

[J2,Ja1 = ill' [K2' KsJ = iJl' 

[1S,Jl] = -iJ2 , [Ka, K1] = iJ2, 

[J1 ,J21 = -iJs, [K1 , K2] = -iJ3 , 

[J2, Ks1 = iKl' [K2,Ja] = iKl' 
(75) 

[13' Kd = iK2' [Ks ,Jl1 = iK2' 

[JI , K21 = -iKs, [KI , J21 = -iKs· 

We can easily see that any three noncommuting 
infinitesimal generators form the Lie algebra of an 
0(2, 1) group. The commutation relations in (75) are 
somewhat complicated. However, we may obtain 
simpler commutation by introducing new Lie algebra 
as linear combinations of the Ji and the K i . Defining 

and 
E; = HJi - K i ), for i = I, 2, 3, (76) 

one has, from (76) and (75), 

and 

[A 2 , AsJ = iA I , 

[As, AIJ = iA2' 

[E2' EaJ = iEI' 

[Ea, ElJ = iE2' 

[Ai,E;J=O, for i,j=I,2,3. 

(17) 

The generators Ai and Ei separately form a Lie 
algebra of 0(2, 1). In other words, 0(2, 2) is the 
product group of two 0(2, 1) groups, i.e., 

0(2,2) = 0(2,1) ® 0(2, 1). (78) 

The group 0(4) has similar structure, i.e., 0(4) = 
0(3) ® 0(3). This similarity is one of the reasons 
that lead to the conjecture that the VIR of 0(4) is a 
continuation of that of 0(2,2), as well as that the 
VIR of 0(3) is that of 0(2, 1). 

The product of the two VIR's of 0(2, 1) is a VIR 
of 0(2, 2). In this representation, the basis vectors 
la, b; Aa , Ab ) are eigenvector of Aa, Bs, and the two 
Casimir operators A2 and B2, where A2 and B2, are 
defined as 

In this section, we use the explicit expression of the and 
CG coefficient to express the VIR ofthe 0(2,2) group. (79) 
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The Casimir operators A2 and B2 have the eigenvalues 
- (a + t)(a - t) and - (b + t)(b - t). The physical 
interpretation of Aa and Ba is not clear. The basis 
vector la, b; AaAb) is normalized by the t:ondition 

(a', h'; A~, A~ I a, h; AaAb) = (l(a', a)o(h', h)o).a').a0).b').b' 

(80) 

The group element g of 0(2, 2) can be uniquely 
parameterized by 

with the group parameters restricted in the domains 

0< q,A' q,B' "PA' "PB < 27T and 0 < eA , eB < 00. 
(82) 

The Haar measure of the group 0(2,2) for this 
parameterization is 

dg = (27T)-4 dq,Ad cosh eA d"PA dq,Bd cosh eB d"PB 

=: dgA dgB . (83) 

The corresponding VIR D~~l'a).bl'b(g) defined by the 
equation. 

D~~l'a).bl'b(g) =: (a, h; Aa, Abl U(g) la, h;/la,/lb) 

= Dtl'a(gA)Dtl'/gB) (84) 

satisfies the normalization and orthogonality condi
tion 

f [D~~l'a).bl'b(g)] * D1~~~a' ).b' I'b,(g) d g 

= 1J(ar11J(h)-lo(a', a)o(h', h)o).a').a0).b').b0l'a'l'a0l'b'l'b' 
(85) 

We are particularly interested here in the VIR of 
0(2,2) whose basis vector la, b;j, A) is an eigenvector 
of J2 , J a, A 2, and B2. The corresponding parameteriza
tion of the group element g' can be uniquely expressed 
as 

g' = e-itj>Jae-iPKae-i9J2e-iaK2e-iIJ!Jae-iyKa 

== uzC4»a.(f3)uvCO)a,k:x.)u'(1fJ)az(y), (86) 

where the new parameters 4>, e, "P, ex, f3, and yare 
related to the old ones by 

and 

ex = H4>A - CPB), (3 = HOA - 0B), y = H"PA - 1fJB)' 
(87) 

From (87), one can calculate the Jacobian, which 
equals !. Hence, the Haar measure dg' for the second 
parameterization is equal to ! that of the .first one. 
The domains of the second set of the parameters can 
be obtained from (82) and (87). 

The basic vector la, b;j, A) is normalized by the 
condition . 

(a', h';j', A' I a, b;j, A) = o(a', a)o(b', b)o(j', j)6).,;.. 

(88) 

It is related to the basis vector la, b; Aa , Ab ) via the 
equation 

la, b;j, A) 

= L C(a, h,j; Aa, A - Aa) la, b; Aa, A - Aa), (89) 
).. 

where the summation for Aa has the same meaning as 
described in (14). From (12), one can obtain the 
inverse relation 

la, h; Aa , Ab) = L C(a, h,j; Aa , Ab) la, h;j, Aa + Ab), 
i (90) 

where the meaning of the summation for j is specified 
in (12). From (89) and (90), one can relate the two 
VIR's of 0(2, 2) by the equation 

D1:').a).b,)./g) = L C(a, h,j'; A~, A~)Dj?).'i;.(g') 
ii' 

X C(a, b,j; Aa , Ab), (91) 

where A = Aa + Ab , and A' = A~ + A~. The VIR 
Dj?w (g') is defined by 

Dj?).'i..{g') = (a, h;j'A'1 U(g') la, b;jA). 

From (91) and (14), one can derive the inverse relation 
ofEq. (91). By means ofEq. (91) or its inverse relation, 
one can obtain the orthogonal relation for D~!'),'iA(g') 

from that of D~~').b').a).b(g). That is, 

f Dj~kig')[Di;rk'I',(g')]* dg' 

= ",(a)-1",(hr1(l(a', a)o(h', b)o(j',j)O(k', k)o).,;.0I"I" 

From the properties of the CG coefficients and the 
representation function D~:l'a).bl'b(g), one can calculate 
the orthogonality relations for the representation 
function of the subgroups of 0(2, 2). From (87), 
(89), and (90), one can express D~!')"i).(g) in terms of 
the representation functions of its I-parameter sub
groups: 

Di?;:;).(g') = L e-itj>).'D1h(a.(ex»d~,,,(O) 
kk'p 

X D~:k' ).(auC{3»D~?).g(a.(y»eilJ!).. 
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The representation functions 

Dj~))az«(l)) and D~~k'A(all(p» 

can be explicitly calculated by means of Eqs. (80), 
(89), and (90). The expression for Dj~M(a.(oc» is 
particularly simple, i.e., 

Dj~M(a.(oc» 
= ~ c(a, b, j'; #, ;. - #)ei

()'-21')lZc*(a, b, j; #' ;. - #), 
I' 

which has the same form as that of 0(4). 

VII. CONCLUSION 

The CG coefficient of 0(2,1) and SU(I, 1) defined 
in this paper, when it is continued in the ji into the 
domain corresponding to the 0(3) group, is equal to 
that12.la of 0(3) except for a phase factor. Strictly 
speaking, the Wigner coefficient12.2a defined by 

W(jl ,j2 ,ja; VI' '112) = ['YJ(ja)]-!C(jl ,j2 ,ja; VI' '112) 

is a continuable quantity, rather than the CG coeffi
cient, since the Plancherel measures of 0(2, 1) and 
SU(I, 1) for the discrete and continuous series differ 
by a factor tan 7T(ja - #a). 

The general continuable expressions of the two CG 
coefficients are defined in (69). The simple expressions 
for particular cases are defined in (61), (65), and (67). 
Theja spectra are tabulated in Tables VI-IX. The pole 
structures of the related G functions for some or all of 
the ji in the discrete series are collected in Tables II, 
III, IV, and X. 

As a final remark, one notes that our SU(I, 1) 
representation functions dv/(z) and av'/(z) of the 
first and the second kinds are related to Andrews 
and Gunson's d/I'(z) and e/I'(z) by the equations5 

d/,,(z) = ei7,(v-l')dv/(z) 

and 
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A nonsingular, sourceless, first-order pulse of gravitational radiation imploding from infinity to a 
focus and then exploding back out to infinity is examined to second order. It is found that, contrary to 
what might be expected, the nonsingular second-order field contains no radiation. In space-time regions 
outside of the pulse, the second-order field is nonvanishing only in the region with retarded times 
earlier than the passing of the exploding pulse and ad vanced times later than the passing of the imploding 
pulse. In this region, the second-order field is that of a Schwarzschild mass, plus a nonradiative quadru
pole, plus a nonradiative sixteen pole. 

1. INTRODUCTION see that in any region of space-time where 

The field equations of general relativity have often 
been studied using a perturbative approximation 
scheme. If one chooses coordinates properly, and 
assumes1a that 

1 
yp.v = 0, 

we have (2)b"v = 0, and consequently 

(1.4) 

1 2 
gllv = 'YJIlV + ehp.v + e2hllV + ... , (1.1) 

(1.5) 

substitution of this metric-tensor expansion1b into In such a region, the (2)Y IlV may be interpreted in 
terms appropriate to a field in Minkowski space 
which satisfies the homogeneous wave equation (1.5). 
This analysis is always applicable to the lowest-order 
nonvanishing (kIY"v in a region, and such fields we 
call "formally linear," whatever their order. In 
this paper, we consider certain perturbative solutions 
of Einstein's equations, and although we shall be using 

G
IlV 

= 0 leads t02 

1 
Dy"v = 0, 

2 2 
Dy"y = bp.v, 

k 
k 0 Oy"v = /IV' 

where 

o is the d'Alembertian, 

k 

(1.2) null coordinates, working in a null-tetrad formalism, 
and treating the curvature tensor as the fundamental 
field rather than the metric tensor, the above remarks 
and definition of "formally linear" remain applicable. 

The first-order solution to the homogeneous wave 
equation, with which we begin our perturbative 
expansion, is a spherical wave of gravitational 
quadrupole radiation imploding from past null 

(1.3) infinity to a focus, and then exploding back out to 
future null infinity. Such a first-order field can be 
shown to be nonsingular everywhere, including at the 
focus of the wave. We wish in particular to consider 

and the r5"v are known functions of the lower-order 
our spherical wave to be a pulse of radiation, that is, 
a wave of finite temporal duration, and we sketch 
this first-order field on a Penrose diagram3 in Fig. I. quantities 

k' , 
Yp.v,k = 1,2,··· ,k-1. 

The diagram represents a conformally compactified 
Minkowski space with [-, [0. and [+ labeling past 

Thus, the solving of Einstein's vacuum equations in temporal, spatial, and future temporal infinity, 
a perturbative expansion can begin with the solving respectively, and J- and J+ labeling past and future 
of homogeneous wave equations, and then continue, null infinity, respectively. Two spatial dimensions 
at each higher order, with the solving of in homo- have been suppressed, and points, lines, and regions 
geneous wave equations. In particular, it is easy to bearing the same label are in fact connected, although 

2096 
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FIG.!. The first-
order field. 1° 

they appear disconnected in the diagram. Since the 
compactification is conformal, straight lines at a 45° 
angle to the horizontal represent null hypersurfaces, 
and the pulse of radiation results in a nonvanishing 
gravitational field in the region indicated by the 
cross hatching in Fig. 1. 

The first-order solution pictured in Fig. I does not, 
of course, uniquely determine its second-order 
correction; one must also supply second-order initial 
data or boundary values. We fix the problem by 
making two demands. First, we require that the 
second-order correction is also nonsingular. The use 
in second order of Einstein's vacuum equations, 
combined with this requirement, assures us that we 
still have no sources present. Second, we demand 
that there is no second-order radiation on J- that is 
that there is nothing coming in from past null' infinity: 
By adding this requirement, we insure that any 
second-order radiation found at future null infinity 
(J+) has been generated by the self-interaction of 
the first-order field. If we do not find radiation on 
J+, then presumably none was generated, since there 
are no sources present that could have absorbed it. 
It is not obvious that the first demand can be satisfied 
but we find that in fact it can be, and that these tw~ 
demands then uniquely determine the second-order 
correction. The situation is depicted in Fig. 2. We 
then calculate the second-order Riemann tensor, 
and with its aid we are able to answer several interest
ing questions: 

(1) Is th~re ~econ~-order .radiation arnvIng at 
future null Infimty (J ) at pOints bordering regions 
B or A? If so, we must think of it as originating and 
p:opagati?g. as indicated by the arrows labeled y in 
Fig. 2; thiS IS because we are solving for the retarded 
solution of an inhomogeneous wave equation and 
:adiation can only arise in the region of support ~f the 
Inhomogeneity and it can only propagate along the 

characteristics of the hyperbolic equation. Such 
second-order radiation might be said to originate by 
"backward scattering," since it propagates in a 
direction opposite to the propagation of the first
order wave which is its source. 

(2) Is there second-order radiation arriving at 
future null infinity (J+) at points bordering the cross
hatched region of Fig. 2? If so, it might be back
scattered radiation. If, however, we find in answer 
to question (1) that back scattering does not occur, 
we must conclude that any radiation found in answer 
to question (2) originated and propagated as indicated 
by either the arrow labeled Xl or the arrow labeled 
X2' In the first case, we might call the radiation 
"forward scattered"; in the second case, we might 
call it "mixed scattered," since it depended on the 
simultaneous presence of incoming and outgoing 
first-order radiation. Some problem might arise in 
distinguishing between the forward scattered and 
mixed scattered radiation, but we see in Sec. 6 that 
it does not. 

(3) Regardless of the presence or absence of 
scattered radiation at J+, one may simply ask whether 
there are nonvanishing second-order fields in any of 
regions A, B, or C, and, if so, of what type. 

The answers to these questions are given in the 
concluding section of the paper. 

In the second section, we outline the null tetrad 
formalism used to do the calculations. In Sec. 3, we 
~erive the relations needed to do perturbation theory 
In the null tetrad formalism. In Secs. 4 and 5, we 
discuss the first-order solutions and the second-order 
corrections, respectively. In each of these two latter 
sections, the quantities of interest are calculated in 
part A, and in part B, they are examined to make sure 
that they are nonsingular as desired. Finally, the 
complicated expressions of Sec. 5 are analyzed in the 
concluding section, in order to answer the three 
questions which we have posed. 

FIG. 2. The second
order field. 
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2. NULL-TETRAD FORMALISM 

We use throughout this paper the null-tetrad 
formalism introduced by Newman and Penrose,4.5 
and a brief review of it is given in this section. 

Consider a tetrad of basis vectors l/l' np ' mp ' and 
mil in the 4-dimensional Riemannian space satisfying 

IPn/l = -mPm/l = 1, 

l/ll/l = nPn/l = m/lm,.. = f/lm,.. = n/lm,.. = O. (2.1) 

It follows from Eq. (2.1) that the metric is given in 
terms of the tetrad by 

g"v = l/lnv + Ivn" - m/lmV - mvm". (2.2) 

After certain definitions are made, a set of partial 
differential equations are derived in Ref. 4 which are 
equivalent to the Einstein field equations. The 
needed definitions are: intrinsic derivatives, 

(2.3) 

for an arbitrary scalar <I>; combinations of Ricci 
rotation coefficients (called spin coefficients), 

K == 1/l;vm"lv, 

7T == -n,..;vm/li', 

€ == !(l/l;vn/lIV - mll;vmlllV), 

p == l/l;vm"mv, 

.It == -nll:vmllmV, 

IX == !(lIl;vnllmV - mll;vmllmV), 

a' == l,,;vmllmv, 

p == -n/l;VmllmV, 

{J == !(lIl;vnllmV - m,..;vInllmV), 

'V == -nll;vmllnV, 

y == !(l/l;VnllnV - m,,;vm"nV
), 

T == II';vml'nv; 

(2.4a) 

(2Ab) 

(2.4c) 

(2.4d) 

(2Ae) 

(2Af) 

(2.4g) 

(2.4h) 

(2.4i) 

(2Aj) 

(2.4k) 

(2.41) 

and the independent components of the Weyl tensor, 

':Yo == -Cl'vp,,["mVIPm", 

\£"1 == -Cllvp"lllnVIPmtf, 

'F'2 == -Cllvp"mllnvIPm", 

0/3 == -Cllvp"mllnV1Pntf, 

0/4 == -Cllvp"m/lnVmPntf. 

(2.Sa) 

(2.Sb) 

(2.Sc) 

(2.Sd) 

(2.Se) 

Before writing down the field equations, we impose 
(without loss of generality) several simplifying co
ordinate and tetrad conditions. A parameter u which 

labels null hypersurfaces of the hyperbolic Riemannian 
space by u = const is taken as the timelike coordinate, 
i.e., XO = u. The null-tetrad vector III is chosen as6 

III = -u.1l = -b~, (2.6) 

so that it is normal to the null hypersurfaces, U = 
const. It is then also geodesic. Let Xl = r denote the 
affine parameter along the null geodesics lying in the 
null surfaces, and let the Xi label the different geodesics 
on each hypersurface. Then we have III = dxp/dr = b't. 
The relation gllV Iv = III implies6 

gO} = -I (2.7) 

and gOO = gOi = O. This form of I" produces the 
following conditions on the spin-coefficients: 

II' is geodesic, K = 0, 

E + E = 0, 

p = p, 
III in terms of an affine parameter, 

[I' is hypersurface orthogonal, 

T = ii + (J, [11 is equal to a gradient. 

We also parallelly propagate nil along II" which gives 
7T = 0, and mil and ml' along Ill' which gives E - E = 0. 

In compliance with Eqs. (2.1), the vectors nil, mil, 
and mP take the form 

nP = -bg + Ubr + Xi~f, 
mil = wbr + $W, 

and the metric is then given by 

gIl = 2(U - row), 

gli = Xi _ aiw + ~iW), 
gii = -ai~i + ~i~i). 

(2.8a) 

(2.8b) 

(2.9a) 

(2.9b) 

(2.9c) 

In terms of the quantities introduced in Eqs. (2.8), 
the operators defined by Eqs. (2.3) become 

a 
D=-, 

or 
a . a 

~=w-+e-., 
or ox' 

a a . a 
~=U---+X'-.. 

or au ox' 
(2.10) 

We call the set of quantities defined by Eqs. (2.4), 
(2.5), and (2.8) tetrad-formalism (TF) variables. 

The empty-space field equations may now be written 
as4 

D$i = p$i + a'~i, 
Dro = pro + a'W - T, 

DXi = 'f~i + T~i, 
DU = 'fw + TW - (y + ji), 

(2.11a) 

(2.11 b) 

(2. 11 c) 

(2.11d) 
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Dp = p2 + a(;, (2. 12a) 

Da = 2pa + 'fo, (2.l2b) 

DT = pT + aT + 'F 1 , (2. 12c) 

Doc = poc + ap, (2. 12d) 

DfJ = pfJ + aoc + 'F1 , (2.12e) 

Dy = TOC + 'TfJ + 'F2 , (2.12f) 

DA = pA + aft, (2. 12g) 

Dft = pft + aA + 'F2 , (2.12h) 

Dv = TA + Tft + 'Fa, (2.12i) 

()Xi _ il;i = (ft + y - y);i + Mi, (2.13a) 

~~i _ J;i = (p - OC);i - (fJ - El)~i, (2.13b) 

~w - JOJ = (p - oc)OJ + (El - fJ)w + ft - P, 
(2.13c) 

~U - ilOJ = (ft + y - y)w + Xw - ii, (2.13d) 

ilA - ~v = 20cv + (y - 3y - ft - P)A - 'F4 , 

(2. 14a) 

~p - ~a = Tp + (p - 3oc)a - 'F1 , (2.14b) 

~oc - Jp = ftP - Aa - 20cp + ocEl + PP - 'f2' 
(2.l4c) 

CJA - Jft ,= Tfl + (El - 3fJ)A - 'Fa, (2.l4d) 

()v - Dr.ft = yft - 2fJv + yft + ft2 + AX, (2.14e) 

()y - ilfJ = Tft - av + (ft - y + y)fJ + d, (2.140 

()T - Dr.a = 2TfJ + (y - 3y + ft)(J + Xp, (2. 14g) 

Dr.p - bT = (y + y - il)p - 20CT - A(J - 'F2 , 

(2.14h) 

Dr.oc - Jy = pv - TA - fJA + (y - y - il)oc - 'Fa. 

(2.14i) 

Equations (2.11) and (2.12) are called radial equations 
and Eqs. (2.13) and (2.14) are called nonradial equa
tions. The vacuum Bianchi identities in this tetrad 
formalism are 

D'F..Hl - J'F A = (4 - A)p'F A+l - 2(2 - Ah'f A 

- AA'f A-I' (2.15) 

Dr.'f A - ~'F.A+l = Av'F Ll-l - 2(A - 2)y'Y A 

+ (A - 4)T'f A+1 - (A + l)ft'F A 

+ 2(A - 1 )fJ'Y A+l - (A - 3)a'F A+2 • 
(2.16) 

where A = 0, 1,2,3. 

3. PERTURBATION THEORY 

In this section, the structure of the field equations 
is examined in perturbation theory. We assume that 

each TF variable is expandable in a small parameter, 
and we write, for example, p = (O)p + (1)p + (2)P ••• , 

where the subscript "zero" denotes flat space. For 
ease of writing, in the remainder of this section, we 
omit the designation of the perturbative order from 
those TF variables which are the order indicated by 
the title of the subsection in which they occur. In later 
sections, we often omit the perturbative order designa
tion from a quantity when its order is clear from the 
context. 

A. Zeroth-Order Field 

The zeroth-order field is simply flat space-time, 
and in null-spherical polar coordinates it is given by 

'FA =0, 

rft = U = -1, p = -r-1, 

oc = -fJ = -(2r)-1 cot e, 
~i = r-1(I, i/sin e), 

with all other TF variables equal to zero. 

B. First-Order Field 

(3.1) 

The first-order field has been studied before in this 
formalism,7-9 and we only sketch the essential points 
here. We first use the linearized form of the Bianchi 
identities, Eqs. (2.15) and (2.16), as field equations 
for the 'Y A' These equations are 

. A + 1 1 
'FA + D'F A + -- 'FA - - o'F A+l = 0, (3.2) 

r r 

4 - A 1-
D'F A+l + -- 'Y..Hl + - o'F A = 0, (3.3) 

r r 

where A = 0, 1,2,3, the dot denotes a/au, and 0 and 

o are angular differential operators. lO 

The assumption that 'Yo = 0(r-5)11 as r -->- 00, 

which insures us that our space is asymptotically 
flat at future null infinity, allows us the following 
solutions of Eq. (3.3): 

'F 'F:'t+l 1 IT la-A;;:\T~ d I A+l = 4=A - 4-A r v TAr, 
r r OCJ 

(3.4) 

where the 'F~+I' A = 0, 1, 2, 3, are arbitrary func
tions of u, e, and cpo Substituting Eq. (3.4) into Eqs. 
(3.2), we find that 

(3.5) 
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and 

0/
0 
+ D\Fo + 'Fo + l (' r'303'Yo dr' _ o:~ = o. 

r r 5 Joo r') 

(3.6) 

If we are given 'IJ'~(u, e, 4» and 'F~, 'F~ and 'F~ at a 
particular time uo ' solving Eq. (3.6) leads to a solution 
'FA of Eqs. (3.2) and (3.3). 

To complete our discussion of the first-order 
calculation, it is necessary to find the rest of the TF 
variables. They are obtained by linearizing Eqs. (2.11) 
and (2.12) and integrating them. The results are 

or 
~ = -~ Joo (j dr', 

1 ir 

p = -oc + - r''F1 dr', 
r 00 

7" = oc + p, 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.7e) 

y = -r~ rr ~ (7: - T) dr' + rr 'F2 dr', (3.7f) 
Joo r Joo 

1 ir 

ft = - r''F2 dr', 
r 00 

(3.7g) 

11r 
A,0 A = - - ii dr' + - , 

r 00 r 
(3.7h) 

i
r 

- ir 

'11=- T,dr' + '¥3 dr', 
oor 00 

(3.7i) 

u = - {(y + ji)dr', (3.7j) 

w = _! rr r'T dr' + WO , 

r Joo r 
(3.7k) 

Xi = r~i .!.. dr' + r~i .!.. dr', °1r °1r

-
00 r' 00 r' 

(3.71) 

o Ir ~i = ~i 00 a dr', (3.7m) 

where aO, AO, and WO are functions independent of 
r arising from the integration of Eqs. (2.11) and (2.12). 
The remaining field equations, Eqs. (2.13) and (2.14), 
are then satisfied if 

W
O = -'5ao, 

'F~ - 'P~ = i}2ao - ·t?ijo, 

'¥~ = o~o, 
'¥~ = _ijO. 

(3.8a) 

(3.8b) 

(3.8c) 

(3.8d) 

(3.8e) 

A statement of the first-order initial-data problem, 
consistent with that of the full theory, 5 can now, with 
~he aid of Eqs. (3.8), be given. If one gives 'F~(e, 4» + 
'F~(e, 4», 'F~(e, 4», '¥o(e, 4>, r) at a particular value of 
u, and aO(u, e, 4» for all u, one can obtain all of the 
first-order TF variables. Information about the 
retarded and advanced radiation is contained in 
aO(u, e, 4» and 'Fo(r, e, 4»,9 respectively, while these 
quantities combine with the rest of the initial data 
to fix the nonradiative (including the stationary) part 
of the solution. To avoid angular singularities, we 
must take aO = L;:2 L~=-l a~m2 Y 1m ; then Eq. (3.8c) 
prevents imaginary ("magnetic") monopoles from 
appearing.8 

C. Second-Order Field 

We now give the equations needed to find the 
second-order corrections to first-order solutions of 
Eqs. (3.2), (3.3), and (3.7). The relevant equations are 
those obtained by collecting all second-order terms 
when the small-parameter perturbation expansions 
are substituted into Eqs. (2.11)-(2.16). The questions 
which we wish to investigate can be answered from 
the second-order 'FA alone; thus, we shall limit 
ourselves to the second order of the Bianchi identities, 
Eqs. (2.15) and (2.16), obtaining 

. A + 1 1 
'YA + D'FA +--'¥A - - o':I"A+1 = DA (3.9) 

r r 

and 

where A = 0, 1,2,3, and 

(

1. a I 

-DA = e-. + 2(1 - A)a 
ax' 

+ 3(A - 2)7" + w - 'FAH 
1 I a) I 

ar 

( 

I. a 1 + -X'-. + 2(2 - A)y 
ax' 

1 a 1) 1 
- U or - (A + 1)ft 'FA 

11 I 1 
+ Av':I" A-I - (A - 3)a':I"A+2, (3.11) 

RAH = (ct ~ + ~i~. - 2(2 - A)~)fA ar ax' 
I I 

- AA':I" A-I. (3.12) 

As was indicated in the Introduction, Eq~. (3.9) and 
(3.10) are simply inhomogeneous versions of Eqs. 
(3.2) and (3.3). 
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We can integrate Eqs. (3.10), introducing second
order constants of integration 'Y ~ , to obtain 

'Y~+1 1 iT ,3-A -tT~ , 
'Y .. 4+1 = 4-A - 4=:::i r «h A + rRA +1) dr . 

r r· 00 

(3.13) 

This is, of course, analogous to our treatment of Eqs. 
(3.3), and substituting Eqs. (3.13) into Eqs. (3.9) 
yields a second-order version of Eqs. (3.5),7 and Eq. 
(3.6), which are 

(3.14) 

. 'Yo 1 iT ,3 - ,o'Yf 
'Yo + D'Yo + - + - r M'Yodr - -5 = :Do· 

r r5 
00 r 

(3.15) 

These equations, along with 'Y~ = _aD, make the 
initial data discussion of Sec. 3A adequate to this part 
as well. Since we base our interpretations on the 
Riemann tensor alone in second order, it is not 
necessary to consider the second-order corrections to 
Eqs. (3.7); and we have now assembled everything 
that we need in Sees. 4 and 5. 

4. FIRST-ORDER SOLUTIONS AND 
SINGULARITIES 

A. The Solutions 

Those solutions of Eqs. (3.2) and (3.3) correspond
ing to axially symmetric gravitational radiation are 
known, and are given here.7- 9 The retarded radiation 
fields are given by 

'Y = K (I) Y, rl-W,-2+A( a(u) ) (4.1) 
A 2-A 2-A!O rl+3--A ' 

while the advanced radiation fields are 

'Y = K (1) Y r l- 2 DI+2- A (b( u - r ») (4.2) 
A A-2 2-A!O l-l+A ' r 

where 

K (1) === (0 + P)!)!- d =_ ~ ~ a 
P (l - p)!' au + ar' D === ar ' 

and 
1= 2, 3,"', 

and the • Yw are generalized spherical harmonics.12 

The functions a(u) and b(u - r) are arbitrary functions 
of their respective arguments, which determine the 
profiles of the retarded and advanced waves, respec-

tively. The profile functions for each different value 
of I are, of course, unrelated. If dl+ta(u)/dul+1 = 0, a 
retarded solution is called nonradiative, since energy 
is not being carried to infinity,s.13 and an analogous 
definition is used for advanced solutions. 

When one knows the 'Y A' one can then use Eqs. 
(3.7) and (3.8) to obtain the spin coefficients and 
tetrad vector components to first order. This calcula
tion has been discussed elsewhere,7 and in this paper 
we simply give the results: The retarded solutions are 

p = 0, 

( 

- 1-2 ) 
(J = -K y2 al C al-2-n 

-2 I 2 + I InO ( + 2) n+4 ' r n=O n r 

IX = -IXK_2Y I - + I C lnO , 
o _2(al 1-2 iii 2 n ) 

r n=O (n + 2)(n + 3)rn+3 
1-1 

T = -K y 1 IC al-l-n 
-1 In=o In1 (n + 2)rn+3 ' 

f3 = T - iX, 
o 1-1 y 1a y-l -

'Y = -IXK_
1 
I C

ln1 
I 1-1-n - I al-l-n 

n=O (n + 2)(n + 3)rn+2 

(4.3a) 

1+1 

')I = -Kly~l I C!n3 al
+1-n 

n=O (n + 1)r,,+1 
1-1 -

+ K y-1 ~ C all" 
-1 I ~ In1 , 

n=O (n + 2)(n + 3)rn+3 

1+_ 
U = _ yO~ C a l _ n al _ n 

I~ In2 , 
n=O (n + l)(n + 2)rn+1 

W = - K y1 ~ + ~ C al - 1- n 
( 

- 1-1 

r n=O (n + l)(n + 2)rn+2
) 

-1 I ~ In1 , 

o 1-1 
Xi = EiK y1 ~ C a l- 1_ n 

" -1 I~ In! 
n=O (n + 2)(n + 3)rn+2 

+ complex conjugate, 

o (Ii 1-2 e = ;iK y2 -.l + ~ C al - 2_ n ) 
-2 I ~ InO , 

r n=O (n + 2)(n + 3)rn+3 
where 
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and we have indicated derivatives of a(u) by a sub
script, as at == d1a(u)/du1

; the advanced solutions are 

p = 0, 
(j = K_2Y~rI-lDl[r-lD(b/rl-l)], 

ex = _~K_2y;-2rlDH[r-2D(hlrl-l)], 
'T = K_l Y~rl-l D1-1[r-1 D(b/rl)], 

fJ = 'T - ii, 

r = ~K_lrIDI-2[r-2D«Y~b - y;-l[j)/rl)] 

+ y~rl-l DI-
2[r-1 D( b/rIH)], 

I-' = y~rl-l D1- 1( blrl+2), 

A = - K_2 y l 2r l-l D1- 1[r- 2 D( bl r Z-
1
)], 

v = KIy;-lrt-lDH(b/rl+3) 

+ K_l y1lrl-l DI-
2[r-2 D(h/rZ

)], 

U = - Y~rl D I-
2«b + b)/rl+~, 

OJ = - K_l Y~rl Dl-1(b/rl+2), 

Xi = EiK_IY~rlDI-2[r-2D(b/r!)] + c. c., 

~i = ~iK_2Yirl D1-
1[r-2 D(b/rZ

-
1
)]. 

(4.3b) 

Equations (4.3b) are easily obtained from Eqs. (3.7) 
and (4.2), when one uses the identity 

DP[rq+tDq(F/rt )] == rHt- P DIl(DPF!rt - P) 

which holds for any arbitrary function F and all 
nonnegative integers p, q, and t. 

The above solutions, considering the advanced 
and retarded solutions separately, are of course 
singular along the worldline r = O. ·In this paper, we 
are particularly interested in imploding-exploding 
waves, and the corresponding first-order solutions 
are obtained by adding together the m'fA of Eq. (4.1) 
and those of Eq. (4.2), with the added condition that 
b(x) = -a(x), where a and b are the functional 
forms appearing in Eqs. (4.1) and (4.2). This latter 
condition simply means that the same wave comes out 
that went in. Thus, the first-order 'FA with which we 
deal are 

_ (~)1+2-A(a(u - r»)]. 
K A - 2 :l 1-1+A ur r 

(4.4) 

In the same way, one can easily construct from Eqs. 
(4.3) the retarded-minus-advanced first-order spin 
coefficients and tetrad vector components, corre
sponding to the 'fA ofEq. (4.4), but we do not display 
them explicitly. 

The pure retarded 'FA given by Eqs. (4.1), and the 
pure advanced 'fA given by Eqs. (4.2), are obviously 
singular at r = O. This relates to the fact that the pure 
retarded wave must have originated at r = 0, while 
the pure advanced wave must have been absorbed 
there. The 'FA given by Eq. (4.4), however, are for an 
imploding-exploding wave, and such a situation 
involves no emission or absorption; thus, it is of 
interest to determine the structure of these 'FA 

[Eq. (4.4)] at r = O. In order to do this, it is sufficient 
that we assume that 

(4.5) 

for small r. We actually make the stronger assumption 

(4.6) 

for convenience, but that of Eq. (4.5) is sufficient. If 
one inserts Eq. (4.6) into Eq. (4.4),one obtains, after 
some manipulation, 

'FA = KA - 2 2-A YlOr'-2 

~ an( _l)n+l(n - 1+ 1 - A)! n-21-1 
X £., r 

n=2l+1 n! (n - 21 - 1)! 

+ O(rN-!-2). (4.7) 

Thus, we see that, as far as the variable r is con
cerned, the 'fA are well behaved at r = O. In fact, only 
for the case 1= 2 are they nonvanishing there. For 
the I = 2 case, there remains the problem that () and 
</>, and thus the 2-A Yzo , are not well defined at r = O. 
This difficulty is resolved later. 

Using the results embodied in Eq. (4.7), it is 
possible to find all the first-order spin coefficients and 
tetrad vector components for small r directly from 
Eqs. (3.7) and (3.8). These calculations are quite 
complicated, and the results are not simple; therefore, 
we give only a sample calculation (the spin coefficient 
(1), and we give results only for the tetrad vector 
components, which are all we need later. 

We begin by writing each of Eqs. (3.7) in terms of 
an integral from 0 to r, instead of an integral from 
00 to r. Thus, for example, 

is rewritten as 
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and in view of Eq. (4.7), we have 

(1 = ~((10 + {r,2'Yo dr') + 0(rl
-

1
). (4.8) 

The integral in the first term is, from Eq. (4.4), 

_ (1- 2)!(~)l+2(a(u - r»)] dr, (4.9) 
(1 + 2)! or r'-1 

which, after substituting Eq. (4.6), becomes 

iO,[1-2 (I-2)! (O)'-2-n an(_l)n 
2 YioK 2 r I - 3 

<Xl n=O (1 - 2 - n)! n! or r l+ 

_ (l - 2)!(~)1+2 'i anrn ] dr. (4.10) 
(1 + 2)! or n=O n! r'-1 

If we use the previously mentioned identity with 
p = t = 1 on the second line of Eq. (4.10), then the 
integration can be performed, yielding, after many 
manipulations, 

{r,2'Yo dr' = -2¥ioK_2a,(u). (4.11) 

Substituting this into Eq. (4.8), and evaluating aO 

via Eq. (3.8c), gives 

(1 = -[Cal + al)Y~K_2]r-2 + O(rl-1). (4.12) 

We now list the results of similar calculations on the 
tetrad vector components: 

U = -(am + aZ+1)K:IY~ 
+ (a'+2 + aZ+2)K:2Y~r + O(r'), (4.13a) 

w = -(a, + az)K_IY~r-l 
+ a'+1K~l Y,l + O(r'), 

x 2 = (a Z+1 + a'+1)K~lY~r-l 

(4.13b) 

- (a'+2 + a!+2)2K_IK:2Y~ + 0(rl- 1
), 

(4.13c) 

X 3ji csc 0 = (a'+1 - a'+1)K~1 Y~r-l 

+ (a l+2 - al+2)2K_IK:2Y~ + O(r'-I), 

(4.13d) 

~2 = (a l + al)K_2Y~r-2 
- a'+12K_2K:IY~r-l + O(rl-l), (4.13e) 

eli esc () = -Cal + al)K_2Y~r-2 
+ a'+12K_2K:IY~r-l + O(r'-I). (4.13f) 

We also want to know the behavior of the metric 
tensor for small r, and this can be calculated from Eqs. 
(4.13) and Eqs. (2.9) yielding 

gll = oYw[-2K:1(a l+1 + al+1) 

+ 2K:2(al+2 + iil+z)r] + O(r'), (4.14a) 
g12 = lYIO[2K_1(a l + ii,)r-2 

- 2K_1 K:laI+2 + aI+2)] + O(r!-l), (4.14b) 

g13 = i csc 02K_1K:2(aI+2 - a,+2)lYIO + 0(rl
-

1), 

(4.14c) 

g22 = [-4K_2(a, + ii,)r-3 

+ 4K_2K:1(a'+1 + a'+1)r-2] 2 YIO + O(r1-2), 

(4.14d) 

g23 = [i csc 84K:1K_2(a,+1 - iiH1 )r-2
] 2 YIO + 0(rl

-
2
), 

(4.14e) 

gSS = csc2 O[4K_2(a, + a,)r-S 

- 4K_2K:1(a l+1 + al+1)r-2]2YIO + 0(rl
-

2). 

(4.14f) 
B. The Nature of the Singularities 

We have noted that the 'Y A are ambiguous at r = 0 
due to the presence of the angular variables 0 and ¢, 
and we have found that some of the tetrad vector 
components and metric tensor components actually 
diverge at r = O. We now show that these difficulties 
are a consequence of the choice of coordinates and 
of the choice of tetrad vectors made in the problem. 
This choice, which has proven highly useful in study
ing radiation fields for large r, is unsatisfactory for 
r "-' O. We consider first the metric tensor components 
since they are independent of the choice of tetrad 
vectors, and enable us to consider the question of 
coordinate conditions by itself. 

The zeroth-order metric tensor, which follows 
directly from Eqs. (3.l), gives the line element 

ds2 = -2 du dr + 2 du 2 - 2r2(d02 + sin2 0 d¢2), 

(4.15) 

for which det (g/lv) = 0, at r = O. One knows, of 
course, that the coordinate transformation 

XO = 2i( -u + ir), 

Xl = r sin () cos ¢/2!, 

x2 = r sin 0 sin ¢/2!, 

x3 = r cos Oj2!, 

transforms ds2 to the form 

(4.16) 
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We now wish to find a first-order correction to Eqs. 
(4.16) so that these corrected transformations, when 
applied to the singular metric tensor (O)g"'V + (l)gl'V 

given by Eqs; (4.15) and (4.14), result in a metric 
tensor well behaved for r,......" O. It turns out to be 
convenient to assume the desired transformations to 
be 

X O = 2t(-u + tr + EO), 

Xl = (r + EI) sin 0 cos cfo/2!, 

x 2 = (r + E2) sin 0 sin cfo/2t, 
x 3 = r cos 012! + E3/2t. 

(4.18) 

If we then do this coordinate transformation to 
(O)gI'V + (l)gl'V, and ask that the resulting (O)g"" + 
(l)g"'V' be well behaved at r = 0, we obtain differential 
equations for EO, E!, E2, and E3. Three of these can be 
easily solved to yield 

EO = -tK:I(al + al)oYzo, 

EI = E2 = K_2(a l + al )2YzO' (4.19) 

while the equation for E3 is 

E~8 = (cos OY~K_l + sin eY~K_2)(al + al)' (4.20) 

This last equation cannot be solved by putting E3 

1 

equal to any simple combination of generalized 
spherical harmonics, but one can see that for each 
value of I it can be easily solved. We have no need 
of the actual solution, so we are content with Eq. 
(4.20). It has now been established that the first-order 
geometry for our problem is everywhere nonsingular. 

We are particularly interested in the behavior of 
the 'Y A at r = O. They, of course, depend on the choice 
of tetrad vectors, and, in as much as our /Jl and n'" 
vector fields diverge from the world-line r = 0, it is 
to be expected that a tetrad transformation is also 
needed. 

In the zeroth order, the tetrad vectors are given by 

[I' = or, 
° nil = -og - of, (4.21) 

~Jl = r-\ o~ + i esc eO~) 

in the u, r, e, and cfo coordinate system. We denote 
this tetrad by (O)Z~ = (Ill, (O)nll , (O)mll , (o)iiil'). If we 
make the tetrad transformation 

(4.22) 
where 

0 0 

Xl Xl 
1 ClX3 

. z) 1 (X
1
X

3 
. 2) - --IX - --IX 

r r w r w r 

LB
C == (2rt X2 X2 

1 (X
2
X

3 
. 1) 1 C2X3 + . 1) ( 4.23) 

- -- - IX - - IX 
r r w r w r 

with r = [(XI)2 + (X2)2 + (X3)2]t and 

w = [(XI)2 + (X2)2]t, 

X3 

r 

X3 

r 

and then the coordinate transformation given by 
Eq. (4.16), we obtain 

(4.24) 

The tensor indices in Eq. (4.24) refer to the coordi
nates (XO, xl, X2, x3) of Eq. (4.16). 

Let us now define tetrad components of (1)Cllvpa 

with respect to the new tetrad (0) V h : 

(4.25) 

A lengthy but straightforward calculation then gives 

W W 

r r 

us the C BCDE in terms of the 'Y A' The result is 

-CBCDE 

= 'YoCL[B°Lc]2L[D°LE]2) + tp'iL[BILc]3L[DILE]3) 

+ tp'1(L[B°Lc]lL[D°LEJ2 + L[BILC]3L[DlLE]2 

- L[BOLc/L[D2LEJ3 - L(B2Lc/L[DILEJ2) 

+ tp's( -L[BoLc]lL[DlLE]3 - L[iLc ]3L[DoL El
l 

+ L[BILc/L[D2LE/ + L[B2LC]3L[DILE]3) 

+ 'Y2[-L[BoLc]2L[DlLE]3 - L[BILc1
3L[D°LE ]2 

+ (L[BoLc / - L[B2Lc ]3)(L[D°LE]l - L[D2LE ]3)] 

+ complex conjugate. (4.26) 

The expressions given by Eq. (4.7) for the tp'A's, for 
r""' 0, show that 

lim tp' A = 0, I> 2. (4.27) 
r~O 



                                                                                                                                    

SELF-INTERACTION OF GRAVITATIONAL RADIATION 2105 

Since the CBODE are just linear combinations of the 
'FA' we conclude that 

lim CnoDE = 0, I> 2. (4.28) 
r-+O 

When 1 = 2, one obtains 

lim COlol = lim C Ol23 = ~ ~ (a + a), 
r-+O r-+O 3( 57T) du 5 

and that C0102 ' C0103 ' C0112 ' and COll3 all vanish as 
, -+ 0. These particular components are a complete 
and independent set for C BODE. Thus, we see that 
the tetrad components of the Weyl tensor are in fact 
well defined at , = ° for arbitrary I. Since the tetrad 
has the form given by Eq. (4.24), we also see that the 
Weyl tensor itself is nonsingular. 

The significance of the preceding calculations is 
twofold. They show, first of all, that the first-order 
imploding-exploding wave corresponding to the 'FA 
of Eqs. (4.4) leads to a geometry with no singularities 
despite the ambiguities of the '¥ A at r = 0, for 1 = 2, 
and the explicit infinities at , = ° in the metric tensor. 
The difficulties with the mathematical expressions are 
due to the choice of coordinate and tetrad conditions, 
and the transformations given by Eqs. (4.18) and 
Eqs. (4.23) remove the offending ambiguities and 
infinities and make the good behavior of the geometry 
manifest. 

5. THE SECOND·ORDER SOLUTIONS AND 
SINGULARITIES 

A. The Solution 

We now find the second-order field in our problem 
of an imploding-exploding, first-order, quadrupole 
pulse of radiation. The nonsingular first-order field 
pictured in Fig. 1 is given by Eqs. (4.4) with 1 = 2, 
and by the sum of the retarded and advanced fields 
of Eqs. (4.3) with 1 = 2 and a(x) = -b(x). The 
function a(u) is nonvanishing only in the pulse region 
(lui < uo), separating regions A and B and hence b 
is nonvanishing only in the pulse region (Ivl < uo), 
separating regions Band C. 

To find the second-order field, we need the driving 
terms DA and RA+1 for this case. From Eqs. (3.11) 
and (3.12), we find them to be 

6*(4 - A)!)*R 
A! A+1 

= Y;IY~-A[r2D(I) + 3a - 4d +!!.] ,4 r2 r3 r 

x [D&-A(_b ) - (5 - A)! dA(_a )] 
r A+1 A! r 6- A 

- y;2y~-A[A(5 - A)]* 

x [D4- A(_b ) + (4 - A)! dA(_a )] 
rAH A! r5- A 

t + y-2y3-A(_A_) 
2 2 5 _ A 

x trD - D - - .!!:.. + ..!!... + -.!!. { [1 (6)J ... .. 2-} 
r2 r 2r 2r2 r4 

x [D&-A(~) + (5 - A)! dA-1(_a)J (5.1) 
rA (A - 1)! r6- A ' 

6*(4 - A)!)*D 
A! A 

= y~y;A[(A + l)(A + 2)(3 - A)(4 - A)]* 

x {rD[~ D(~) J + 2~2 + ~~}PA+l 
- ty~y~-A[(A + 1)(4 - A)]* 

x [1 D(~) + ~ - 2aJpA r r2 ,3 ,4 

+ tY21y~-A[A(5 - A)]*[; D(~) + ~ - ~~JPA 
+ t/3 y~y;-A(2 - A) 

-")3 y~y;-A[rD(~) _!!.. + 3d - 4a]PA r4 ,2 ,3 r4 

+ ! y;y;A(3 - A)[(A + l)(A + 2)(3 - A)( 4 - A)]! 

(5.2) 
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where A = 0, 1,2,3, and 

The products of spin-weighted functions occurring 
in Eqs. (5.1) and (5.2) are all special cases of the 
general product Y: Y::. The product Yt Y;: may be 
expanded in a finite series in the spin-weighted 
functions Yts' with the numerical coefficients of 
Yl+· in the expansion given in terms of Wigner 3-j 
symbols by 

(-1)*' ~ [(21 + 1)(21' + 1)(2L + l)]! 
2( 7T) 

x (~ ~ ~)(~s ~'S' s ~ s) 
In the expansions used in Eqs. (5.1) and (5.2), only the 
terms L = 0, 2, 4 occur (the Y~+s' term occurs only 
when s + s' = 0). These expansions determine the 
angular dependence of the second-order field since 
the angular dependence of the equations determining 
the (2WA' Eqs. (3.13) and (3.15), is eliminated by 
taking the (2)'Y A to be a linear combination of Y.rA

, 

L = 0, 2, 4. 
From Rl and Dl , we obtain the quantity ~o which 

drives Eq. (3.15): 

~o = Dl + ~ (' r,4oRl dr'. (5.3) 
r )0'.) 

A method of solving Eq. (3.15) with ~o known was 
given in Ref. 7, Sec. 3 and Appendix B. We apply the 
method to the case at hand and obtain (2WO to be 

~o = L Y~r-2 D2(Q(U) - Q(v») 
7(67T)! r. 

_ ~ Y~[r-2 D2(S(U) - S"(v) 
7(27T)! 4r 

_ Z S(u) + S'(v) + 7 S(u) - S(V») 
6 r2 3 r3 

+ 28 E(u) ~ E(V)] + To, (5.4a) 

where 

ftt 1"'8 1"'1 - d
6
a(x) Q(u) == -1 dX2 dXl a(x) --6- dx, 

-0'.) -0'.) -00 dx 

S(u) == 2 f:oodX1 r: Q(x) dx, 

I tt d2a(x) 
E(u) == - V a(x) -d 2 dx, 

-00 x 

v == u - r. 

Note that 

Q(v) = -1fv dx 2f"'2 dxIf"'l a(x) d
6
a(x) dx 

-0'.) -0'.) -00 dx6 

= -if v dx2f"'2 dxIf"'l hex) d
6
b(x) dx. 

-00 -00 -00 dX 6 

!he p~imes denote differentiation with respect to v, 
l.e., Q (v) == dQ(v)/dv. 

Knowing (2)'YO and RA+!, we calculate the remaining 
(2)'Y A'S from Eqs. (3.13) and obtain 

~l = ~ 11~ D(- Q(u) + Q'(V) 
7(67T)! r2 r 

+ 2 Q(u) - Q(V») 
r2 

_ ~ ~ y![.!. D(- ~ S(u) + SIII(V) 
47(7T)! r2 9 r 

+ S(u) - S"(v) _ 14 S(u) + S'(V) 
r2 3 r3 

+ 28 S(u) - S(V») _ 112 E(u) - E(V)] 
3 r 4 3 r7 + T1 , 

(5.4b) 
qr __ 1 _ yO Q(U) + Q"(v) 

2 - 12(7T)! 0 r3 

+ ~ y~(Q(U) - Q"(v) _ Q(u) + Q'(V) 

7(7T)! 6r3 r4 

+ 2 Q(u) - Q(V») 
r5 

_ ~ _1_ y~(S·(U) - S""(v) _ S(u) + SIII(V) 

2 7(7T)! 180r3 9r4 

S(u) - S"(v) 14 S(u) + S'(V) + -r5 3 r6 

28 S(u) - S(v) 28 E(u) - E(V») + - 7 + 7 + T2 , 
3 r 3 r 

(5.4c) 

+ 28 E(u) - E(V)] + 1: 
7 3' r 

(S.4d) 
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0/
4 

= L y;2(Q(U) _ 2Q(u) + 2Q(u) _ 2Q(V)) 
7(61T)t r3 r4 r5 r5 

_ ~ St2t Y4"2(S(U) _ lOS'(u) + SS(u) 

47(1T)t 6r3 9r4 r5 

l4S(u) S6S(u) S"(v) l4S'(v) ---+---- ---
~ 3~ 3~ 3~ 

S6S(v) S6 E(u) - E(V)) ---7-+- 7 + T4 • 
3r 3 r 

(S.4e) 

The quantities TA are transient terms vanishing in 
regions A, B, and C. Their exact forms are necessary 
for the calculations that follow and are given in 
Appendix A. 

In Eqs. (S.4), we have incorporated the results of 
integrating Eqs. (3.14) with the initial data of our 
problem; namely, 

2 2 2 ~ 

%lu~-oo = o/~Iu~-oo = (o/~ + '¥~)Iu~-oo = O. 

The results of the integration are 

2 2 

'Y~ = 'Y~ = 0, 

where we have taken aO(u) = O. 

(S.Sa) 

(S.Sb) 

(S.Sc) 

The solution given by Eqs. (5.4) is unique; it is 
picked out from all possible solutions by the fact that 
it satisfies our second-order boundary conditions. 
There is no freedom of adding a formally linear 
advanced field because of the requirement that there 
be no radiation coming in from J-, and there is no 
freedom of adding a formally linear retarded field 
because of the requirement that there be no singulari
ties at r = O. We now investigate the solution in regard 
to four properties: outgoing radiation, singularities, 
incoming radiation, and the nature of the solution in 
regions A, E, and C. 

Outgoing radiation is characterized by the news 
function, 

a~ut == lim r20/ 3, U = const. 
T-+ 00 

This definition14 is essentially equivalent to that of 
Bondi.13 The nonvanishing of a~ut means that there 

is radiation reaching J+. It follows easily from Eq. 
(5.4d) that a~ut = O. This result depends on our 
choice of (2)a

O (u) = 0 in obtaining Eqs. (S.4) and (5.S). 
However, this is not an arbitrary choice: It is the only 
choice possible with our boundary conditions. A 
nonzero (2)aO(u) can only be obtained (except for 
(2)ao = const) by adding a formally linear retarded 
field, but this would introduce singularities at r = 0 
into the (2,0/ A which are nonsingular as given by 
Eqs. (S.4). 

To prove that the (2)'¥ A are nonsingular, we simply 
evaluate them near r = O. We assume that o7bjor7 
exists, then b has an expansion near r = 0 powers of 
r up to r7, oblor has an expansion through r6 , etc. 
Similarly, Q(v) has an expansion up to r4, and S(v) 
and E(v) have expansions up to r6. Direct substitution 
of these expansions into Eq. (S.4) with TA given by 
Eq. (Al) and use of the fact that a(u) = -b(u) gives 
immediately that 

2 

'YA = 0(1), r~O. (S.6) 

The powers of r-1 that ostensibly occur in the (2,o/A 

cancel identically to zero in a neighborhood of r = O. 
The solution given by Eqs. (S.4) has been chosen 

so that it has no radiation coming in from J-. To see 
this, one must show that the news function for in
coming radiation is zero. This is done by transforming 

to a tetrad system (Ill, fill, mil, ,iill) ill which the vector 
fill that points along the backward null surfaces 
satisfies the same conditions as the vector [" associated 
with the forward .null surfaces. Then the incoming 
news function, defined in the same way at J- as aD 
• o~ 
IS at J+, must be given as 

2 
2 -
a~Jl = lim r2'P\, u - r = const. (5.7) 

r-+ 00 

Note that, although u - r = const does not label 
backward null surfaces correct to first order inside the 
pulse, the limit in Eq. (S.7) is the same as one taken 
along the proper first-order backward null surfaces 

because (2)"0/1 is second order. 
The calculation of ai~l is straightforward but some

what long: We give it in Appendix B. The important 
result is that ai~ = O. 

We now evaluate the solution in regions A, B, 
and C. 

It follows directly from Eqs. (S.4) and the fact that 

Q(u) = Q(v) = S(u) = S(v) = E(u) = E(v) = 0 

in region C that the solution in region C is (2)'Y A = 
O. In region A, the Yi part of,¥o reduces immediately 
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to r- 2 D[(Q(u) - Q(v»jr], where now, since v > uo' 

J
UO J"'1 d

6
b ) + (v - uo) dXl b-udx 

-Uo -Uo dx 

= Q(uo) + (v - uo)Q'(uo) + l(v - uo)2Q"(uo). 

With this form of Q(v), direct calculation shows that 

,-2D2(Q(v)Jr) = 2Q(u)Jr5• 

Hence, r-2D[(Q(u) - Q(v»Jr] = O. Similar calcula
tions for the Y; part of (2)0/0 and for the rest of the 
(2)0/ A show that in region A the solution is (2)0/ A = O. 

In region B, we have Q(u) = S(u) = E(u) = 0, 
and Q(v), S(v) , and E(v) are the same as they are in 
region A. We find then for the solution in region B 

where 

(5.9a) 

+ Hu - uo)2Q"(uo)], (5.9b) 

s(u) == _1 _(±(u - uo)ndns / + E(Uo»). (5.9c) 
84(1T)l n=O n! dvn 

Uo 

The solution in region B is thus, as expected, a formally 
linear field with 2L-pole structure of L = 0,2,4; it is 
nonradiative since M = 'il (u) = d5s(u)/du5 = O. 

The non transient part ofthe solution can be charac
terized rather simply even in the regions where the 
pulse is present. By comparing Eqs. (5.4) with Eqs. 
(4.1), it may be seen that the retarded parts of the 
«2)0/ A - TA ) are identical in form to nonradiative
motion fields with monopole, quadrupole, and 16-
pole moments proportional to Q(u), Q(u), and S(u) + 
E(u), respectively. The only difference is that Q and 
d5(S + E)/du5 do not vanish in the region where the 
outgoing pulse is present. The exactly analogous 
property holds for the parts of the «2)0/ A - TA ) that 

depend on the advanced time v; this may be seen by 
comparison with Eqs. (4.2). 

B. The Nonsingular Nature of the Field 

The result that the (2)0/ A are finite at r = 0 can be 
anticipated from the fact that the driving terms D A 

and RA+1 have only a ,-1 infinity as r ---+ 0 in the case 
of retarded-min us-advanced fields. All other powers 
of Ijr cancel to zero when the expansion for b(u - r) 
in the neighborhood of r = 0 is substituted into Eqs. 
(5.1) and (5.2). It is easy to see that with these driving 
terms the differential equations, Eqs. (3.9) and (3.10), 
may be satisfied near r = 0 by quantities which are 
0(1). Hence, the driving terms do not contribute, 
near r = 0, any powers of Ijr to a solution and any 
singularities of a solution must satisfy the homoge
neous equations. They are therefore removable by an 
appropriate formally linear solution. 

From Eqs. (2.5), we see that the quantity (2)0/0 is 
given by 

~1J" _ 21 III 0 VIP 1 a 2 ° 0 Io - C,.vper m m + C,.vperlllmv/Pma, (5.10) 

and that (2)0/1 through (2W4 are given by similar 
expressions. In addition to the fact that the (2)0/ A are 
finite at r = 0, we know from Sec. 4 that (1)Cllvpa is 
nonsingular. However, as discussed in Sec. 4, the 
zeroth-order and first-order tetrads are infinite at 
r = O. Hence, consideration only of Eq. (5.10) and 
the similar equations leaves open the possibility that 
(2)Cllvpa might be infinite even in the coordinate 
system in which (O)gllv + (1)g,.v is manifestly non
singular. 

We now show that, in fact, (2)Cllvpa is nonsingular. 
The first step is to find a tetrad correct to first order 
which is manifestly nonsingular when expressed in 
terms of the coordinates (XO, Xl, x 2, x3) given by Eq. 
(4.18). It is a straightforward calculation to check 
that such a tetrad (in coordinates u, r, (), cfo) is given 
by 

(5.11) 

where (1)Zd is the first-order null tetrad (0, (1) nil , (l)mll, 

(l)fiiJl). One would expect that Eq. (5.11) would have 
a term (1)LB O(o)Z& on the' right-hand side, since the 
tetrad might need a first-order correction. However, 
it turns out that such a term is not necessary since, as 
it stands, the tetrad of Eq. (5.11) is' nonsingular. 

Solving Eq. (5.11) for (O)mll and (l)mll and substi
tuting the result in Eq. (5.10) gives 
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where (LBC)-lLcD = b~, and similar expressions for 
(2)'Y1 through (2W4' In this form, the terms involving 
(l)Cl'vpa are nonsingular and then it follows, from Eq. 
(4.26) and the fact that the (2WA are finite at r = 0, 
that (2)Cl'vpa is nonsingular in the coordinates of Eq. 
(4.18). 

Hence, we have established that the second-order 
field of our problem is nonsingular. Since there is no 
a priori reason to expect that it is possible to obtain a 
nonsingular second-order field from the retarded
minus-advanced first-order field, the fact that it is 
possible is an expression of a property of the Einstein 
field equations. 

6. CONCLUSION 

With the results obtained in Sec. 5, we are now 
able to answer the questions raised in the introduction 
concerning the self-scattering of gravitational radia
tion. Specifically, does a first-order imploding
exploding pulse of gravitational radiation self-interact 
in such a way that second-order radiation is produced? 

The second-order correction given in Sec. 5 was 
found to contain no retarded radiation field. This by 
itself does not mean that no second-order retarded 
radiation field was generated. It is possible that one 
was genera~ed, but that it was cancelled by destructive 
interference with a second-order retarded radiation 
field already present. However, there seems to be only 
two possible ways for another second-order retarded 
radiation field to be present; either it was spontane
ously generated along the line r = 0, or it began as an 
advanced second-order radiation field, and after 
focusing on the line r = 0, became a retarded radia
tion field. However, the possibility that second-order 
retarded radiation fields were generated along the 
line r = 0 is precluded by the nonsingularity of our 
second-order correction along r = 0 for all u. Like
wise, our second-order correction is characterized by 
vanishing incoming radiation on ;}-, and therefore, no 
radiation came in from past null infinity and became 
available for destructive interference at future null 
infinity. We are forced to conclude that the non
existence of retarded radiation in our second-order 
correction is a consequence of nongeneration of second
order radiation by the first-order pulse. The distinction 
between forward, backward, and mixed scattering 
which was made in the introduction (and which seems 
to us a meaningful distinction in the context of a 
perturbative expansion) becomes a distinction of no 
importance; no scattering of any type occurs. 

In order to emphasize the nontriviality of this con
clusion, it should be pointed out that scattering does 
occur under different conditions. The problem of a 

first-order pulse of outgoing quadrupole radiation 
with a first-order mass at its focus was investigated,7 
and in this case, back scattering occurs. The absence of 
such scattering in the pure radiation problem discussed 
in this paper was a surprise to us. 

The other question raised in the introduction 
concerned the nature of the second-order correction 
in regions where the background is Minkowski 
space-time (regions labeled A, B, or C on Fig. 2). 
Before and behind the first-order pulse (in regions A 
or C), the second-order correction vanishes for our 
solution. In region B, the second-order correction is 
a formally linear, nonradiative field characterized by 
a positive monopole moment -M, and nonradiative 
quadrupole and 16-pole moments. These moments are 
given by Eq. (5.9). The second-order mass is the Bondi 
mass13 equivalent to the amount of energy which is 
carried into the focus by the first-order wave. These 
nonradiative effects may be understood as follows. 
Suppose an observer follows the world line indicated 
by the curved solid line from [- to [+ in Fig. 2. From 
[- to the point where the world line encounters the 
incoming pulse, the observer observes a vanishing 
curvature tensor in his neighborhood. While passing 
through the incoming pulse, he observes a very 
complicated field with both first- and second-order 
parts. In region B, the observer experiences the 
relatively simple gravitational field characterized by 
a constant monopole moment and nonradiative 
quadrupole and 16-pole moments. They are due to the 
focusing of the ingoing quadrupole wave toward 
r = 0; however, the effects on the observer are indis
tinguishable from those which would be caused by 
monopole, quadrupole, and 16-pole moments associ
ated with real singularities at r = O. After the observer 
observes the outgoing pUlse, represented by his world 
line intersecting the retarded crosshatching, he is 
again in a space-time with vanishing curvature tensor 
and no gravitational field. 

In conclusion, we should note that the qualitative 
features described above seem to be quite general 
features of radiative interactions of the gravitational 
field, to second-order. Computer calculations15 have 
shown that a nonradiative second-order correction 
arises from first-order fields which are any linear 
combination of 2!-pole fields for 1= 2, 3, 4. Most 
probably, this is true for alii ~ 2. On the other hand, 
it appears likely that if such calculations are continued 
to third order, radiative corrections will appear. 
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APPENDIX A 

The transient quantities TA. occurring in Eqs. (S.4) are given here. We then have the tetrad components of 
the Riemann tensor of the second-order field given completely and explicitly in all of space-time. The TA. are 

Sf 2[ 3dii - aif 360ad 840aa 1 4(G) (b")!If a (bffl)"J To= Y2 -2 ---+--+-D - - - +--
28(61T)f r5 r7 r8 2 r, r r r2 r 

+ Sf y!{3dii - ali' _ 14 4dd - aii + 8 5ad - ad - 30ad 
28( 61T}t r5 r6 r7 

+--+- -+-+- +aD -- +- +- -+-+-S60aa d (b" 6b' 6 b) III 4( b' 4b) d (b" 14b' 28b)'" 
r8 2r r r2 r3 2r3 3r4 2r r 3r2 3r3 

-- -+-+- +-D - - --r - -14--, a (b
ffl 

7b" 14b
l

)" 1 4[1(bb)'J 7 (bflb)1II (b"b)'} 
r2 2r 3r2 3r3 3 r r2 6 r4 r5 

Tl = L y~{aa4 - 2dci + 3dii - aii _ lSaii _ 30 ad - 2ad + IS a(2a - 7a) _ !(Q)III 
7( 61T)f 4r4 r5 r6 r 7 r8 4 r2 

_ d (btl)" _ ~(blll)' + 30ah _ 3d [1 (!?)"J" + a [1 (!?")"'J, _ ! a[1(!?')'JIII_1 ~ D5(!?)} 
2r r2 2r2 r2 r8 4r r r r2 r r 4 r r 4 r2 r 

+ L y!{2dti' - aa4 _ ~ 3dii - aci + ~ 4dd - aii + Saii + 2 2ad - Sad + 60ad 
14(1T)t 12r4 2 r 5 2 r6 r6 r 7 

-10 -- -+-+- --a --+-a(a + 21a) 3d(b" 6b' 6b)' 3 ( b' 4b)1II 
r8 4r r2 r3 r4 2 2r4 3r5 

-- -+-+- +- --+-+--- --d (2b" 12b' 26b)" a (Sb'" Sb" lOb' 4b)' lOah 
4r r2 r3 r4 2r2 6r2 r3 r4 r5 r8 

1 .. [l(b)']/11 h 5(b) 7 [(bllb)" l2(b"b)' 60b"b)] 1[1 (bb)'J!!I} --a-- +-D - +---+ +-- ----;- , 
12 r r 12r2 r 4 r4 r5 r6. 2 r~ r2 

1 o{aa' 3 afi - 3iid 6 4dd - Saii + 30 ad + 3da 120aa T2 =--Yo-+ - -
12(1T)! 4r3 r 5 r6 r 7 r8 

+ 3d[1(!!..)"J' _ Sii(!!..)/11 + ~ ii[!(!!")'J" + 6d(~)' 
r r r2 r3 r2 2 r r2 r r5 

_ 3~3a(~) +~'a[;(~)I'-~r4(~)D4(~) -~~ D5(;)} 

st o{iias - da4 2da' - iia4 36ii - iia' + 3dii + aa' + 4 Saii - d6 
+--Y2 + -

14(1T)t 12r3 2r4 r5 r6 

_ 2 15ad - ad - 15ad + 2 21aa - lOaa + !(Q)" + lOa (r2[,)' 
r 7 r S 2 r3 r9 

- - (rb)' + - 2r3 
- + - - r - + - +-2d - ii [ (4b' 5 b)" 2(b" 6b' lOb)'] 

r7 12r3 r3 r4 r2 r3 r4 

+-a-- -- - --+--1 ,,,[1 (b)'J" a [(b)'" 3b'" 6 (b)"'] 
12 r r 3r3 r2 r2 r r 

+--- --+-- +--D - +r - D d[l(b)" 2b
tl 3 (b)"]' 1 [h 5(b) a(b)' 4(!!..)J} 

2r r r2 r3 r2 r 12 r r2 r4 r2 

+--Y -1 o{da4 - lia5 5 2da' - iia4 + 456ii - ISaa' + 17 dii + au 
14( 1T)t 4 24r3 6 r4 2r5 
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35(4ad - aii) + 45aii - 16da 5 7aii + ad + 60ad 20(21aa + 4aa) - - + ---''-----'----.--'' 
~ ~ ~ 

+--- ---- +-- +--+-+-'(i [l(b)'J" ii [17(b)' 20 (b)'J " 15d(b" 6b' 6b)' 
24 r r 24 r r2 r2 r 2r r3 r4 rS 

- 2d - - - - + 15a - - + - + 5a - - + -[
8b 1 (b)'J (b' 4b )". ( b' 16b) 
r7 2rs r 2r5 3r6 r 7 r S 

+ - - + - + - - 5a - + - + - --a(3b" 22b' 53b)' (bill 2b" b' 16b) 
r r3 r4 rS 3 rS r6 r 7 r S 

_ 35[(b"b)' + 10b"bJ + 5 [!(bb)'J " + ~ D4(!?.) [8b - ~(~)'J _ ~ DS(~)}, 
2 rS r6 r3 r2 12 r2 r2 2r3 r 24r2 r 

Ts = ~ Y21{tia4 + aas _ ~ tili· - aa4 + 2dli· + 9aii - 2ali· + 6dii + lOali· _ 3 2ad + 5aii + aii 
7(6rr)! 4r3 4 r4 2rs r6 

+ 18d(a + a) _ 3a(7a + lOa) _ ~(Q)' 
r7 r S 2 r4 

---- +-- +-- +- +-a-- +--3a[ (b)" l(b)" 3 (b)' 2b"J 1...[2(b)' 1 (b)'J' 
2r2 r3 r r2 r2 r r3 4 r r2 r2 r 

- - - + - - + - - + - - + 2r - + -ii [6b 6 (b)' 4(b)' 1 (b)" 2(4b' 5b)'J 
4r2 r4 r2 r r r2 r r r4 rS 

_ 30a (~)' + 6d(2b' + 3b) _ 6a(2b' + 5b) 
r6 r r6 r 7 r 7 r S 
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+ 3b(ft. + ~) + ~(!!.-)'(k)' _ ~(!!.-)'" + l.(!!'-)"(k)'} r7 r8 r2 r3 r 2r2 r3 2r r3 r 

+ (5)!(2)! Y42{3da4 - 3aas + 5ifi£ + 5aa4 - 6d'ji - 12d'a' + 27iiii 
7(1T)! 12r3 12r4 

+ 9dii - 20a'a'/3 + 12a'a' - 22dii + 6aii - 12dd + 35aii + 19ad - 45aJ + 60ad 
4rs 2r6 2r7 

+ lOa(3a - 2a) + ! 'a:(3b' + 7b) _ ! ii(70b' + 31b) + .1'(i(3h' _ 5h) 
r8 4 r4 r S 4 r S r6 24 r4 r S 

_ 45a(~ _ 4b) + 45 d(~ + !!.-) _ 2 ii(ft. _ 2h) + ~ d(3h' _ 7h) 
2r7 3r8 2 r6 r7 8 r5 r6 2 r6 r7 

_ ~ a(ft. _ 8h) + ~ ar(!!'-)' + 3J(!!.-)' + 15(bb)' _1(!!,-)"(3h' _ 5h) + 1 ~(!!.-)"'}, 
2 r7 r8 2 r8 2r rS r5 r2 8 r4 r r2 8 r2 r3 

where 

( b)' (b)' (bb)' G == -2d ~ + 2a ~ + -;; . 

APPENDIX B 

We give here the calculation establishing that the 
field given by Eqs. (5.4) contains no incoming 
radiation. 

coordinate system is given by 

u' =V, 

r' = r - lyge' : h' + d: J), 
The backward null surfaces, that is, the surfaces 

whose normal vector V,I' satisfies V,I'v,vgl'v = 0 and 
II'V,I' :F 0, are given, correct to first order, by 

V = const, 

v==u_r+lyg(b+h_d+J+a+a), (B1) 
r2 r r2 

(J' = (J + 6! Yl(b' + h' + d + Ii) 
6 2 r2 r2' 

6! . q,' = _q, + __ 1-

6 sin (J 

x Yl(b' - h' + Ii - d _ 2 ii - a) 
2 r2 r2 ,.3 

For example, it is easy to show that fil" = bi. 

(B4a) 

(B4b) 

(B4c) 

(B4d) 

The vector fil', correct to first order, that bears the 
same relation to the surfaces given by Eq. (Bl) that 
II' bears to the surfaces u = const is given' by 

o 1 0 0 _0 
iiI' = nl' + nl' + Lnl' + PmI' + PmI', (B2) 

The remainder of the tetrad constructed around fil' 
in the same manner as the original tetrad is con
structed around II' is given, correct to first order, by 

p == 6
l y~( Ii _ 3d + 3a - a _ ~ _ b - 3b). 

6 2r 2r2 2r3 2r2 2r3 

(B3) 

That iiI' has this relation to the backward null surfaces 
may be checked directly by transforming fil', given by 
Eq. (B2), to the coordinate system (u', r', (J', q,'), 
which is constructed from the surfaces V = const 
in the same manner that the coordinates u, r, (J, and q, 
are constructed from the surfaces u = const. This 

[I' = [I' + lLlI' + Nihl' + R:nl', 

ml' = PII' + Ngl' + :nl' + Jil' + M,ijl', (B5) 

where 

N == _ 6! Y~(_ ~ + a - 3ii 
6 r2 r3 

_ b" _ 3b' + 3b - b) 
r r2 r3 ' 

M == 6! Y~(_ d - d + 2 a - a 
6 r2 r3 

+ b' - h' + 2 b - h). (B6) 
r2 r3 

It may be seen by direct calculation that the tetrad 
fil", [1", mil', and ml" satisfies all the tetrad and co
ordinate conditions imposed in Sec. 2, Further 
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details concerning the coordinates and tetrad built and 
around the backward null surfaces are contained in 1-

I< = 21<, 7T = 7T, E = e(2)-l, 

Ref. 9, Sec. 4. 
From Eq. (2.Sb), it is seen that (2)'Y1 is given by 

2 2 III 
'Yl = 'Yl + 'Y1(M - L) + 'YnJ> + 3N'Y1 • (B7) 

We want to evaluate r'2(2)'Y1 , as r' -+ 00 with V = 
const, that is, at J-. All terms involving a(u) will not 
enter into this evaluation, since a(u) vanishes at J-. 
From Eqs. (Bl) and (B4b), we see that V = u - r + 
O(r-l) and r' = r + O(rl) for r -+ 00, U - r = 
canst. Hence, we may go to J- by taking the limit 
r -+ 00, U - r = const. In this limit, we have from 
Eqs. (B3) and (B6) that 

if - L = 0(r-2) = P, N = 0(r-1), 

and from Eqs. (4.2) that 

III 
'Yo = O(rl), 'YI = 0(r-2), 'Y2 = 0(r-2). 

Hence, from Eq. (B7), we have 

2 2 
'Y1 = 'Yl + OCr-a). 

Therefore, we have 
2 

2 -"-
a~n == lim (r2\!,\), u - r = const, 

r .... oo 
2 

= lim (r2ip1)' u - r = const. 
r .... oo 

By using (2WI' as given by Eq. (SAb) and Appendix 
A, this latter limit is easily evaluated and found to be 
zero. Hence, the second-order news function for 
incoming radiation vanishes. 

We have considered the tetrad iiI', 11', ml', and fftl' 
only to first order: This is sufficient because second
order parts of the tetrad do not enter into (2)'¥ A . 

APPENDIX C 

The coordinate and tetrad conventions of this paper 
differ from those of preceding papers (Refs. 4, 5, 7-9) 
by the coordinate and tetrad transformations 

[I' = 11'(2)-!, nl' = iil'(2)!, 

r = (2)!r', u = -u'(2)-!, (Cl) 

where the primed and tilded quantities are those used 
in the preceding papers. The consequent changes in 
various fundamental variables are collected here: 
We have 

'Yo = i'Yo, 'Y1 = 'Y 1(2)-!, '¥2 = 'Y2 , 

'¥3 = 2t'fs, 'Y4 = 21Jr4 , (C2) 

P = p(2)-l, ;. = (2)l,l:, IX = ii, 

a = (i'(2)-!, It = (2)l,U, P = p, (C3) 

v = 2v, y = (2)ty, T= f, 

along with 

D = D(2)-l, Ii = (2)tii, d = 8, (C4) 
and 

v = 2V', Xi = (2)lXi', 

W = (2)lw', ;i = ~i'. (C5) 

As a consequence, the constants of integration change, 
and are related to the old ones by 

aO = (2)t(i'o" to = (2)t~io" ° - (2)t-o, IX - IX, 

po = (2)tpo" TO = (2)!fo" W
o = 2wo" 

;'0 = 2);0', UO = 2it', ,),0 = (2)!yOl, 

V
O = 2vo" VO = 2 (j0l, '¥~ = 2(2)l'fr, 

'¥~ = 2(2)!'Y~I, 'Y~ = 2(2)1'f~', 'Y~ = 2(2)hp~I. 
(C6) 

Changes in various equations appearing in the older 
papers and in this one can be determined by direct 
comparison. 
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The operators a and 5 are defined by 

and 
(51) = - (sin 0)'( fo + Si~ 0 o~)[(Sin 0)-'1)1 
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00 Sill 0 o¢ 

where 1) has spin weight s. The most commonly used relations in 
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calculations of this paper are 5. Y1m = K_,(I)KH ,(l)H1 Y1m and 
5. Y1m = -K, -,(/)K,(l),_l Y1m • The 11)0/ A and (2)0/ A have spin weights 
2 - A, 11)(10 and 12)(10 have spin weight 2. It is helpful to adopt the 
convention. Y1m = 0 whenever lsi> I. We often use the abbrevia
tion Yi' == 8 Y IO • For more details, see Ref. 7, Appendix A, and 
references given there. 
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15 The authors are indebted to Dr. William Kinnersley for these 
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A simple mathematical scheme is derived here. With this scheme, three problems oflattice-spin systems 
are solved exactly. The first one is the problem of solving, thermodynamically, a linear chain of the Lenz
Ising model in a zero magnetic field with nearest, as well as next-nearest, neighbor couplings. The problem 
turns out to be equivalent to the problem of a linear chain with only nearest-neighbor couplings but in a 
finite magnetic field. The second one is to solve an imperfect I-dimensional Heisenberg-Dirac model, 
similar to the partially solved "Ising-Heisenberg" model of Lieb-Mattis-Schultz, in a zero magnetic field. 
The problem is solved completely in the sense that all the elementary excitations of this model are shown in 
terms of some pseudofermions and the spectra are given as 

€l(q) = [(A. + B.)2 + E;]l, 

€2(q) = [(A. - B.)2 + E:lt, 

where A., B., and E. are three different functions of sin (q), cos (q), and coupling strengths involved. The 
third one, the XY model, is used to study the contribution of "inhomogeneity" in the coupling strengths 
to the system, as compared to the anisotropicity contribution to it. 

I. MATHEMATICAL PRELIMINARIES 

We first derive here and put in order some of 
the mathematical formulas to be used in this calcula
tion. The main guiding line in this study is to trans
form spin-pair operators to fermion-pair operators. 
Such process has already been used by Mattis et al., 1 

by the way of a so-called "drone operator" in order to 
simplify the stupendous solution of the Lenz-Ising 
model of On sager and Kaufmann and to solve some 
other simple lattice-spin systems. However, we follow 
here a little different path by looking into the com
mutation relations of these two kinds of operators. 
Spin operators obey a mixture of anticommutability 
and commutability; that is to say, spin operators of 
the same site anticommute with one another, while 
they commute with spins of other sites. Such a mixture 
in commutation relation causes the main mathematical 
difficuIty2 in handling a lattice-spin system. On the 

other hand, fermion operators follow a simple rule, 
namely the anticommutation rule, and this fact makes 
a Fourier transformation to reduce a complex spin 
system possible. 

Spin operators anticommute among themselves as 

because 

and 
[S~]2 = 1, 

where m is the index to show different spins. But spins 
of different lattice sites commute with one another. 
On the other hand, fermion operators follow the anti
commutation rule 

and 
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As usual, one represents a set of spin operators by and 

direct products of the Pauli matrices Zm = (- i)C~C~ = 2C~Cm - 1 == ( - i)C~. 

(0 1) (0 -i) 
X = 1 0' Y = i 0' and 

as 
X m == S~ = 1 ® ... ® 1 ® X ® 1 ® ... ® 1 

and 
Ym == S~ = 1 ® ... ® 1 ® Y ® 1 ® ... ® 1, 

where X and Yare in the mth position, and, therefore, 

Zm == S~ = (-i)XmYm 
= 1 ® ... ® 1 ® Z ® 1 ® ... ® 1, 

where Z is in the mth position. 
Now let one define a set of new operators, tenta

tively to be called "fermion generating operators," as 

C!, = Z ® ... ® Z ® X ® 1 ® ... ® 1 

and 

C!:;, = Z ® ... ® Z ® Y ® 1 ® ... ® 1, 

where X and Yare in the mth position; then one sees 
easily that 

and 

Spin pairs of two sites a distance apart cannot, in 
general, be shown in this fashion except with a few ex
ceptions (see Sec. III). This is the reason why a 3-
dimensional Lenz-Ising model and some other more 
complicated lattice-spin systems have not been solved 
with this method. Once this transformation is estab
lished, one will see how easily the stupendous mathe
matical involvement of the Onsager's solution of the 
2-dimensional model can be resolved to an SU2-type 
problem and solved in a one-page work.3 

However, one may generalize the relations (3) a 
little further. If there are a set of matrices (Am' Bm , 

Cm), where m = 1, 2, ... , M, such that 

AmBm = (- )BmAm = iCm, 

A~ = B~ = C~ = 1, for all m, 

and matrices of different indices commute with one 
another, then a set of "fermion generating operators" 
again can be established as 

C!, = C1 ® C2 ® ... ® Cm - 1 ® Am ® 1 ® ... ® I, 

C:;. = C1 ® C2 ® ... ® Cm- 1 ® Bm ® 1 ® ... ® I 
(4) 

{C'" GIl} = 0 for all m and n ... m' n' , . 
(1) and then 

These relations enable one to define a set of operators 
of the Fermi type by the following relations: 

C~ = C!,C:;' = (i)1 ® ... ® 1 ® Cm ® 1 ® ... @ 1, 

where Am, Bm, and Cm are in the mth position. 
The spin operator can be rotated as follows: 

or 

Cm = !(C~ - iC!:;,), 

c!, = i(C~ + iC~) 

C~ = Cm + C;:;, 

C!:;, = i(Cm - C;;;). 

exp (f:lZ)(X) exp ( - f:lZ) = X cosh (2f:1) + i Y sinh (2f:1) 

(2) and 

Consequently, one obtains a set of one-to-one corre
spondence between pairs of spin operators of two 
adjacent lattice sites and pairs of such "fermion 
generating operators" as follows: 

X mX m+1 = (-i)C:;'C~+1 = (CmCm+1 - C;;;C!'+1) 

- (C;;;Cm+1 - CmC!,+1)' 

YmYm+1 = iC!,C:;'+1 = -(CmCm+1 - C;;;C!'+l) 

- (C;:;Cm+1 - CmC~+1)' 

X mYm+1 = (-i)C~C:;'+1 = i[(CmCm+1 +C;;;C!'+1) 

- (C;;;Cm+1 + CmC!,+1)]' 

YmX m+1 = iC;,C;'+1 = i[(CmCm+1 + C;:;C;;;+1) 

+ (C;;;Cm+1 + CmC;;;+1)]' 
(3) 

exp (f:lZ) ( Y) exp ( - f:lZ) 

= Y cosh (2f:1) - iX sinh (2f:1) (cyclically). 

A generalized version of this rotational relation is 

exp (f:lSI ... Sm_lZmSm+1 ... Sm) 

X (Xm) exp (-f:lSI ... Sm-lZmSm+1 ... S1I/) 

= X m cosh (2f:1) 

+ iS1 • •• Sm-l Y mSm+1 ... S 11/ sinh (2f:1) .. " (5) 

where Sm are components of spins: A special case of 
them, which is to be used many times in the following, 
is 

exp I-i(!7T)SI'" Sm_lZmSm+l ... SM] 

X (Xm) exp [i(!7T)Sl ... Sm-1ZmSm+i' .. SM] 

= S1'" Sm-1YmSm+1'" SM' (6) 
and so forth. 
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Equipped with these formulas, we proceed to solve, 
in Sec. II, the linear Lenz-Ising model with nearest, as 
well as next-nearest, neighbor couplings. In Sec. III, 
an imperfect I-dimensional Heisenberg-Dirac model 
is solved exactly in the sense that aU the elementary 
excitations are found and defined. In the last section, 
the XY model is studied with a simple anisotropicity 
and inhomogeneity introduced in the coupling 
strengths. 

II. THE I-DIMENSIONAL LENZ-ISING MODEL 

If the model contains both the nearest-neighbor as 
well as the next-nearest-neighbor couplings, the Hamil
tonian is 

M M 
HI = -J1 I XmXmH - J 2 1 X mXm+2' 

m=l m=1 

Now the operator, 

T = exp [i!1TX1 Y2] exp (i!1TX2 Ya)'" 

exp (i!1TXMY M+l) exp (i!1TXM+lY M+2)' .. (7) 

is used on the Hamiltonian for a transformation. Note 
that factors in this operator do not always commute 
with one another. The Hamiltonian, if one recalls the 
relation (6) in Sec. I, becomes simply 

M M 

H{ = -J1 .2 ZmH - J2 .2 Zm+lZ m+2' 
m=1 m=l 

It is nothing but the Hamiltonian of a I-dimensional 
model with only the nearest-neighbor couplings but 
in a finite magnetic field. The apparent coupling 
strength is that of the original next-nearest-neighbor 
couplings, and the strength of the apparent magnetic 
field is the coupling strength of the original nearest
neighbor couplings. The only discrepancy which can 
possibly occur in this correspondence is in that at the 
boundary a few terms are compromised. However, 
at the thermodynamical limit in which the total 
number of spins M - 00, this difference does not 
affect the result. The statistical mechanical solution of 
such Hamiltonian is, of course, well known. And the 
solution verifies the above transformation. 

On the other hand, if one operates the operator (7) 
to transform the Hamiltonian 

M 

H2 = -J.2 XmX mH , 
m=1 

one gets simply 
M 

HI = -J I Zm+1' 
m=1 

which is nothing but the one for many independent 
spins; that is to say, such Hamiltonian is mathe
matically "decouplable." Consequently, such "de-

couplability" accounts for why a linear chain Lenz
Ising model in a zero magnetic field behaves like many 
independent spins. 

III. THE IMPERFECT I-DIMENSIONAL 
HEISENBERG-DIRAC MODEL 

This model takes a shape defined by the Hamiltonian 

M 

H = -J1 .2 [XamHX3m+2 + Xam+2Xa(mHd 
m=l 

M 

- J 2 ! Y:JmHY:J(mH) 
m=1 
M 

- Ja I [Zam+1Z a(m+1) + Za(m+l)Za(m+l)+l]' (8) 
m=1 

It can be visualized in Fig. 1, in which one strike on the 
lines indicates couplings between x components, two 
strikes on the lines indicate couplings between y 
components, and three strikes on the lines indicate 
interactions between z components. In Fig. 2, the 
"Ising-Heisenberg" model of Lieb-Schultz-Mattis4 is 
drawn for a comparison. One sees that these two 
models are physically very similar. In their work, 
Mattis et al. partially solved this model; that is, it was 
done for the antiferromagnetic case and in a small 
subset defined by M z = O. In this study, the problem 
is solved completely in the sense that all excitations 
are found in terms of pseudofermions without making 
any distinction whether the model is ferromagnetic or 
antiferromagnetic. For a mathematical convenience, 
let an auxiliary structure of Fig. 3 be used for the cal
culation instead of the original one, Fig. 1. In the new 
figure, the sites indicated by solid circles are intro
duced for the manipulation purpose. The Hamiltonian 
(8) should take a shape in terms of the new lattice: 

M 

H' = -J1 .2 [X4m+1X4m+2 + X4m+2X4m+3] 
m=1 

M 

- J 2! Y4m+1 Y4m+a 
m=1 
M 

- Ja.2 [Z4m+1Z 4m+3 + Z4m+3Z4(m+l)+1]' 
m=l 

Now under a transformation by an operator like the 
operator (7) as introduced in Sec. II, but with more 
terms in the product to suit the present purpose, it 

I ~ 

3m 3m+1 3m+2 3(m+1) 3(m+t)+' 
FIG. 1. The lattice structure and couplings of the model. 
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FIG. 2. The "Ising-Heisenberg" model of Lieb, Mattis, and Schultz. 

becomes 
M 

H" = -J1 L [Z'mH + Z'm+3] 
m=1 

M 

- J2 L Y'm+I X'mHX 'm+3 Y'(m+O 
m=l 
M 

- J 3 L [Y'm+I Y'mH Y'm+3 Y,( m+l) 
m=1 

+ ~m+3Y'(m+1) Y,(m+I)+l Y,(m+1)+2]' 

If one defines the identities 

and 

A2m- 1 = Y'm+1X4m+2, B2m- 1 = Y4m+1 Y'm+2, 

C2m- 1 = (-i)A2m-1B2m-1 = Z4m+2 

A2m = X4m+3 Y4(m+1) , B2m = Y4m+3 Y4(m+I) ' 

C2m = (-i)A2mB2m = Z4m+3, 

one finds that the set of operators (Am' Bm, Cm) so 
defined anticommute among themselves, while they 
commute with operators of other sets with different 
indices. Squares of these operators are unity; that is to 
say, they are just like spin operators in every way. 
Hence, with the relation (4) in Sec. I, one can con
struct a set of "fermion-generating operators," C:;' 
and C~, out of these operators as 

C:;, = C1 ®C2 ® ... ® C m- 1 ® Am ® I ® ... ® I, 

C~ = C1 ® C2 ® ... ® Cm- 1 ® Bm ® I ® ... ® I, 

where Am and Bm are in the mth position. Here one 
has to keep in mind the fact that Am' take different 
shapes for the odd and even sites. Finally, the Hamil
tonian can be easily shown, in terms of the "fermion
generating operators," as 

2M M 

H" = iJ1LC;,C~ + iJ2L C:m- 1C;m 
m=1 m=l 

21f 

- iJs L (C:m- 1Qm + C:mqm+l) 
m=l 

and, in terms of the fermion operators Cm and C;" 
2M 

H" = -J1 L (2C;;;Cm - 1) 
m=l 

M 

- J2 I (C2m-1C2m - ctm-lctm 
m=1 

- ctm-1C2m + C2m- 1Ctm) 
2M 

+ J3 I (CmCm+l - C;;;C:;;'+l 
m=l 

From the translation symmetry of the lattice struc
ture and the Hamiltonian, one defines the Fourier 
transforms in the following fashion: 

M 
Cq = M-! I C2m- 1 exp [i(2m - 1)], 

m=1 
M 

dq = M-! L C2m exp [i(2m - 1)]; 
m=l 

and the Hamiltonian in terms of the Fourier trans
forms Cq and dq is 

H" = -2J1 L (ctcq + dtdq - 1) 

- J2 L exp (iq)(Cqd_q - C!qdt 

- C!qd_q + Cqdt) + J3 L exp (iq) 
q 

X [(Cqd_q - C!(/d~ + C!qd_q - Cqd~) 

+ (dqC_q - d!qC~ + d!qC_q - dqC~)]. 

Now one sees' that it is a sum of the terms which 
contain the operators of k wave vector, as well as 
( -)k wave vector, the reflections of k at the origin 
(k = 0) in k space. Hence it is profitable to get rid of 
k < 0 from the sum. Then 

H" = Ho + IHq , 
q>O 

where 

Ho = -2J1(CtCO + dtdo - 1) - J2(Codo - Cridt) 

+ (J2 + 2J3)(Ctdo - Codri) 
and 

Hq = -2Jl(C~Cq + C!qC_q + d~dq + d!qd_q - 2) 

+ Cqd_q[ -J2 exp (iq) + J3 exp (iq) 

- J 3 exp (-iq)] 

+ C!qd~[J2 exp (iq) - J3 exp (iq) 

+ J3exp(-iq)] 

+ C qdq[-J2exp(-iq) + J3 exp(-iq) 

- J 3 exp (iq)] 

+ C:d~q[J2 exp (-iq) - J3 exp (-iq) 

+ J 3 exp (iq)] 

+ C!qd_q[J2 exp (iq) + J3 exp (iq) 

+ J 3 exp (-iq)] 

+ Cqd;[ -J2 exp (iq) - J 3 exp (iq) 

- J a exp (-iq)] 

+ Ctdq[J2exp(-iq) + J3 exp(-iq) 

+ J3 exp (iq)] 

+ Cqd!q[ -J2 exp (-iq) - J 3 exp (-iq) 

- J 3 exp (iq)]. 
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Since pair operators of the Fermi type of different 
kinds commute with one another, the Hamiltonian is 
reduced into many subspaces of 16 X 16, namely,re
duced to an SU4 problem, because the reduced 
Hamiltonian Hq is one of this kind. 

To solve this SU4 problem of 

Hq = -2J1(C~Cq + C~qC_q + d~dq + d~qd_q - 2) 
+ Cqd_q [ -J2 exp (iq) + 2J3i sin (q)] 

+ C~qd~[J2 exp (iq) - 2J3i sin (q)] 
+ dq C_q [J2 exp (-iq) + 2J3i sin (q)] 
+ d~qCt[-J2exp(-iq) - 2J3isin(q)] 

+ C~qd_q[J2 exp (iq) + 2J3 cos (q)] 
+ Cqdt[ -J2 exp (iq) - 2J3 cos (q)] 

+ d~qCq[J2 exp (-iq) + 2J3 cos (q)] 
+ dqCt[ -J2 exp (-iq) - 2J3 cos (q)], 

( 

2J1 0 

o -2J1 

-(J2riq + 2J3cosq) (J2r
iq + 2J3isinq) 

-(J2riq + 2J3i sin q) (J2e-iq + 2J3 cos q) 

It can be expressed in terms of the Dirac's matrices of 
quantum mechanics. For convenience, we go apart 
from the conventional notations but choose the follow
ing one for the matrices: 

Yij = Xi@Xj , i,j= 0, 1,2,3, 

where Xl = X, X2 = Y, X3 = Z, and Xo = I (the 
2 x 2 unit matrix). Consequently, the matrix U(q) is 
shown as 

U(q) = 2J1Y03 - Y13(J2 + 2J3) cos (q) 

+ Y12(J2 - 2J3) sin (q) + Y2a12 sin (q) 

+ Y22J2 cos (q). 

So far, no distinction whatsoever was made on 
whether the model was a ferromagnetic or antiferro
magnetic one. We try to proceed without doing this. 

Now one can make a few similarity transformations 
on the matrix U(q) similar to the principal axis trans
formation one may encounter in algebra. Such trans
formation is equivalent to a linear transformation of 
the vectors x and y, and the latter transformation is 

I I I I 
4m 4m+1 4m+24m+3 4(m+l) 

FIG. 3. The auxiliary lattice structure of the model. 

let one define two vectors as 

in which the components are operators. Then the 
reduced Hamiltonian can be shown in a quadratic 
form by these two vectors as 

4 

Hq = I Umn(q)XmYn, 
m.n~l 

where the matrix U(q) is 

-(J2e
iq + 2J3 cos q) 

(J2eiq 
- 2J3i sin q) 

2J1 

o 

(-J2e
iq + 2J3i sin q») 

(J2eiq + 2J3 cos q) 
o . 

-2J1 

nothing but a generalized version of the Bogoliubov
Valatin transformation (see also Appendix). Since the 
components of the vectors involved are operators of 
variables k, it is essential that the transformation be 
canonical. 

Suppose that the linear transformation is 

x = TTX' and y = T-1y'; 

then 

where TT and T-1 are the transpose and inverse 
matrix of T, respectively. 

Six similarity transformations in the following order 
are used on the matrix U(q) and their corresponding 
transformations of the Bogoliubov-Valatin type are 
also presented: 

(1) The transformation operator is 

T1 = exp [i(!7T)Y30] = cosh (ti7T) + Y30 sinh (li7T) 

(:i 0 0 0 

1 + i 0 0 
= 2-i 

o )-0 0 1 - i 

0 0 0 1 - i 
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and 

( 

c: --+ 2-!(1 - i)ct 
C-a --+ 2-!(1 - i)C_a 

Y - 1,1y'--+ 
- 1 d: -->- r!(l + i)dt 

d-a -->- 2-i(1 + i)d_a; 

it is a canonical transformation. The matrix U(q) , 
after this transformation by the relation (6) of Sec. I, 
can be easily shown to be 

U1(q) = 2J1Y03 + Y23(J2 + 2J3) cos (q) 

- Y22(J2 - 2J3) sin (q) + J2Y13 sin (q) 

+ Y12J2 cos (q). 

(2) The transformation operator is 

T2 = exp (-OYao) = cosh (20) - Y30 sinh (20) 

= (ex

p 

o~(_O) exp (-0) ~o ), 
o exp (0) 

o 0 exp (0) 

where 

cosh (20) = (J2 + 2Ja) cos (q) , 
[J~sin2(q) + (J2 + 2Ja)2COS2(q)]i 

sinh (20) = iJ2 sin (q) , 
[J~sin2(q) + (J2 + 2J3)2 cos2 (q)]! 

and, therefore, O*(q) = (- )O(q) and O( -q) = (- )O(q). 
The corresponding linear transformation is 

and 

it is a canonical transformation. The matrix U1(q) 

with the relation (5) becomes 

U2(q} = 2J1Yoa + (J2 + 2Ja) cos (q) 

x (Y2acosh20+ iY13sinh20) 

+ J2 sin (q)(Y13 cosh 20 - iY23 sinh 20) 

- (J2 - 2J3)sin(q)(Y22cosh20 + iY12sinh20) 

+ J2cos(q)(Y12cosh20 - iY22 sinh 20) 

= 2J{Yoa + ydJ;sin2(q) + (J2 + 2Ja)2COS2 (q)]i 

Y12{J2[J2 + 2Jacos(2q)]} 
+--~~~~~~~~~~ 

[J~sin2(q) + (J2 + 2J3)2COS2 (q)]i 

Y22[2J; sin (2q)] 
+. 

[J~sin2(q) + (J2 + 2Ja)2cos2 q]i 

(3) The transformation operator is 

T3 = exp [( -ii1r)Yo3] 

= 2_!(1 ~ i 1: i ~ 
o 0 1 - i 

000 

~ ), 
1 + i 

and its corresponding Bogoliubov-Valatin transfor-
mation is 

and 

( 

Ca -->- 2-i (1 - i)Cq 

C+ -->- 2-i(1 + i)C+ 
x = TTX' -->- -q -a 

3 dq -->- 2-i(1 - i)da 

d!q -->- 2-i(1 + i)d"!:a 

( 

ct -->- 2-!(l + i)ct 
-1 , C_q -->- 2-i (l - i)C_a 

y = T3 Y -->- dt --+ 2-i (1 + i)dt 

d_q -->- 2-i (1 - i)d_a ; 

it is a canonical transformation. The matrix U2(q) 
after a transformation by the operator Ta with the 
relation (6) becomes 

U3(q) = 2J1Yoa + Y23[J~sin2(q) + (J2 + 2J3)2COS2(q)]1 

Yl1{J2[J2 + 2J3cos(2q)]} 

[J~sin2(q) + (J2 + 2J3)2cos2q]! 

Y21 [2Ji sin (2q)] 

(4) The transformation operator is 

T4 = exp {[t1Ti]Y30} (;; 0 0 0 

1 + i 0 0 = 2-i 0). 0 0 1 - i 

0 0 0 1 - i 
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(

cosh (oc) 

Ts = exp [OCY22] = ~ 
-sinh (oc) 

it is a canonical transformation. The matrix U3(q) 
after a transformation by the operator T4 with the 
relation (6) becomes 

Uiq) = 2J1Yoa + Y1a[J;sin 2(q) + (J2 + 2Ja)2COS 2(q)]t 

Y2I{J2[J2 + 2Jacos(2q)]} 
+--~~~--~~~~~ 

[J;sin2(q) + (J2 + 2J3Y!COS2q]t 

I'll [2J: sin (2q)] 

[J:sin2(q) + (J2 + 2Ja)2COS2(q)]t' 

(5) The transformation operator is 

o 0 -sinh (c:x») 
cosh (oc) sinh (oc) 0 

sinh (c:x) cosh (c:x) 0 ' 

o 0 cosh (IX) 

where 

and, therefore, 

(J.*(q) = (- )oc(q) , ocC -q) = (J.{q). 

The corresponding linear transformation is 

( 

Cq -+ Cq cosh (J. - d!q sinh (J. 

T I C!q -+ C!q cosh IX + dq sinh (J. 
x = T"x -+ 

dq -+ dq cosh c:x + C!q sinh IX 

d!q-+ d!q cosh c:x - Cq sinh c:x 

and 

( 

ct -+ ct cosh oc + d_q sinh (J. 

-1 I C_q -+ C-a cosh c:x - dt sinh c:x 
y = Ts y --

dt -- d; cosh c:x - C-a sinh IX 

d_q -+ d_a cosh c:x + ct sinh c:x; 

it is a canonical transformation. The matrix U4(q) 
after a transformation by the operator T" with the 
relation (5) becomes 

Us(q) = 2J1[Y03 cosh (2oc) + iY21 sinh (2c:x)] + [1'21 cosh (2c:x) - iY03 sinh (2c:x)]{J2[J2 + 2J3 cos (2q)J) 

X [J:sin2(q) + (J2 + 2JS)2cos 2 q1-t + Y13[J~sin2q + (J2 + 2Ja)2cos2q]t 

- Y11[2J: sin (2q)J[J; sin2 (q) + (J2 + 2J3)2 cos2 q]-t. 

_ {[4J~(J~Sin2q + (J2 + 2Ja)2cos2 q) + J~(J2 + 2JaCOS2q)2]}t 
- "03 [J;sin2q + (J2 + 2J3)lIcos2 q] 

2 • 2 2 2 t "11[2J: sin 2q] + "13[J2 sm q + (J2 + 2J3) cos q] - 2 2 2 ! . 
[J;sin q + (J2 + 2J3) cos qJ 

(6) The transformation operator is 

T. = exp [-(!i~)y .. l = 2-! (i 
o 

o 
1 

-~ -~) 
1 0' 

o 1 
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it is a canonical transformation. The matrix U5(q) with the relation (6) finally becomes 

U6(q) = A(q)Yoa + B(q)Yaa + E(q)Ya1 

(

A(q) + B(q) E(q) 0 

= E(q) - [A(q) + B(q)] 0 

o 0 A(q) - B(q) 

o 0 -E(q) 

-;(q) ), 
-[A(q) -B(q)] 

where 

A( ) = ([4J~(J~Sin2q + (J2 + 2Ja)2cos
2

q) + J~(J2 + 2JaCOS2q)2)1 
q [J~ sin2 q + (J2 + 2Ja)2 cos2 q] , 

B(q) = [J~ sin2 q + (J2 + 2Ja)2 cos 2 q]l, 
and 

Consequently, the reduced Hamiltonian is trans- and 
formed to be E(k = 0) = O. 

H'(q) = -[A(q) + B(q)](C~Cq + C~qC_q - 1) 

+ E(q)(CqC_q + C~qC~) 
- [A(q) - B(q)](d~dq + d~qd_q - 1) 

- E(q)(dqd_q + d!qd~) 
and is reduced to an SU2 problem. With the aid of 
the Appendix, 

H~ - H; = (C~Cq + C~qC_q - 1) 

x ([A(q) + B(q)]2 + E2(q)}f 

+ (d~dq + d~qd_a - 1) 

x ([A(q) - B(q)]2 + E2(q)} f. 

Consequently, 

H~ = (ctco - !)[(Ao + BO)2 + E~]t 
+ (dtdo - !)[(Ao - BO)2 + E~]t. 

And, also, since 

and 

one gets 

A_q = Aq , 

B_q = Bq , 

H; = (C~Cq - !)[(Aq + Bq)2 + E:]f 

2121 

For the term of k = 0, the reduced Hamiltonian 
can also be solved, but it is simpler, because it is 
already an SU2 problem of Co and do. With the defi
nition given in the Appendix, 

+ (C~qC_q - !)[(A-a + B_q)2 + E~i 
+ (d;dq - !)[(Aq - Bq)2 + E:]f 

Ho = -2J1a: - J 2a.'" + (J2 + 2Ja){J'" 

and, with its aid, the reduced Hamiltonian becomes 

Ho-H~ = a.~(4J~ + J~)f + (JZ(J2 + 2J3) 

= (CriCo - !)[(J2 + 2J3) + (4J~ + J~)l] 
+ (dtdo - !)[ -(J2 + 2J3) + (4J~ + J~)l]. 

This expression is nothing but that of the reduced 
Hamiltonian H; when k vanishes, because 

A (k = 0) = (4J~ + J:)f, 
B(k = 0) = (J2 + 2J3), 

+ (d~qd_q - !)[(A_q - B_q)2 + E~i. 
Finally, the total Hamiltonian in a diagonal form is 

H"-H" = H~ + 2,H~ 
q*O 

= I {(2CtCq - l)![(Aq + Bq)2 + E!]f 
(all q) 

+ (2dtdq - I)U(Aq - Bq)2 + E;]l. 

Therefore, the spectra of this I-dimensional model 
in terms of pseudofermions are in two branches, and 
they are 
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and the diagonalized Hamiltonian, 

H" = I [(2CtC q - 1)E1(q) + (2dtd q - 1)E2(q)], 
(all q) 

where 
= ([4J~(J~ sin2 q + (J2 + 2Ja)2 cos 2 q) + J~(J2 + 2Ja cos 2q)2])t 

Aq [Ji sin2 q + (J2 + 2Ja)2 cos2 q] , 

Bq = [J~sin2q + (J2 + 2Ja)2cos2q]t, 
and 

E = -2J~ sin (2q) . 

q [J~ sin2 q + (J2 + 2Ja)2 cos2 q]t 

The result can be easily checked with a few special 
cases of this problem with known results: 

(i) For Jl = J2 = 0, Aq = 0, Bq = 2Ja cos (q), and 
Eq = (-)2Ja sin (q). Consequently, 

E1.2 = Ja, 

and the Hamiltonian is 

H = Ja I [(2C~Cq - 1) + (2d~dq - 1)]. 
(allq) 

Since in this special case the problem is reduced to 
a linear chain Lenz-Ising model, the eigenvalues of 
the Hamiltonian are ±Ja, which agree with the solu
tion here. 

(ii) For J2 = 0, Aq = 2J1 , Bq = 2Ja cos (q), and 
Eq = -2Ja sin (q). Consequently, 

E1,2 = {[J1 ± Jacos(qW + J:sin2q}t. 

This special case is an imperfect XY model and, in 
fact, shows the resemblance with the result obtained by 
Lieb, Schultz, and Mattis 4 and the result of Sec. VI, 
the special case (i). 

(iii) For J2 = Ja = 0, Aq = 2J1 and Bq = Eq = 0. 
Consequently, 

The result fits for this case of many independent 
clusters of spin pairs. 

(iv) For J1 = 0, 

and 

J2(J2 + 2Ja cos 2q) 

Aq = [J~ sin2 q + (J2 + 2Ja)2 cos 2 q]~-' 
Bq = [J:sin2q + (J2 + 2Ja)2cos2q]!, 

-2J~ sin (2q) 

Eq = [J~sin2q + (J
2 
+ 2Ja)2cos2q]t· 

The result agrees with the one of Sec. IV, the special 
case (iii). 

(v) ForJl = J3 = O,Aq = J2 ,Bq = J2 ,andEq = 0, 

El = J2 and E2 = 0. 

This is the solution for many independent spins. 

(vi) For J3 = 0, Aq = [4Jf + Ji]t, Bq = J2 , and 
Eq = 0. Consequently, 

E1,2 = H(4Ji + J~)t ± J 2]. 

As expected, there is no correlation between clusters 
of spins. 

In the above calculation, spectra of the elementary 
excitations are in two branches, and both of them are 
in the form of 

E(q) = [f(Jm, sin q, cos q)l~-, 

regardless of whether it is a ferromagnetic or anti
ferromagnetic model. In fact, all the exact spectra so 
far known for the i-dimensional model, including the 
one for the XY model,4 the one for the "Ising
Heisenberg" model,4 and the numerical solution on 
the full Heisenberg-Dirac model of Cloiseaux and 
Pearson,5 are of this shape. It is commonly assumed 
that there is a distinction between a ferromagnetism 
and an antiferromagnetism such that the spectrum of 
the former is of the form of 

lim E(q) oc q2, 
q--+small 

and that of the latter is of the form of 

lim E(q) oc q. 
q--+small 

For a i-dimensional model, such distinction may be 
an oversimplication of the issue, because only for an 
isotropic ferromagnetism in which 

HI = -I (JlXmX m+1 + J 2YmYm+1 + JaZmZ m+1) 
m 

where Jl = J2 = J3 = J > 0, is the ground state the 
state when all spins are parallel, and the first excited 
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state the state with one spin deviation. In the case, in 
which J1 ':;f: J2 , a ferromagnetic model does not show 
such a simple solution. Rather,all existing evidence (see 
Refs. 4 and 5 and Secs. III and IV of this work) 
suggests that it may also have a spectrum of the shape 
of 

[j(1m, sinq, cosq)]t. 

The simple solution for an isotropic ferromagnetism 
may, thus, be a special case of this general type of 
solutions. 

The ground-state energy of this model is 

Eur. = - J... (" {[(Aq + Bq)2 + E~]t 
47T 1-" 

+ [(Aq - Bq)2 + E;]f} dq 

when no pseudofermion is present. 

IV. THE XY MODEL 

The purpose of this section is to study the contri
bution of inhomogeneity in the coupling strength to 
the lattice-spin system. The anisotropicity in the 
coupling strength has been under attentionS for a 
good many years. However, the inhomogeneity has 
eluded concerns in the study of lattice-spin systems. 
As a simple example, the XY model of Lieb-Schultz
Mattis is studied with two coupling strengths of dif
ferent sizes coming into play alternatively. In order to 
compare its effect with the effect caused by aniso
tropicity, the latter is also admitted in the model. The 
Hamiltonian for this purpose is 

M 

H = - ~ (J1X2m-1X2m + J2X2mX2mH 
m~l 

+ JaY2m-1Y2m + J4Y2mY2m+1)' 

namely, the coupling strength of the model is neither 
homogeneous nor isotropic. By the relation (3) of 
Sec. I, the Hamiltonian in terms of operators of the 
Fermi type can be shown to be 

H = ~ [( -J1 + Ja)(C2m-1C2m - Ctm-1Ctm) 

+ (J1 + Ja)(Ctm-1C2m - C2m- 1Ctm) 

+ (-J2 + J4)(C2mC2mH - Ct.nctmH) 

+ (J2 + J4)(CtmC2mH - C2mCtmH)]' 

With the Fourier transforms defined as 

M 

Cq = (Mrt ~ C2m- 1 exp [(2m - l)iq] 
m=l 

and 
M 

dq = (M)-i L C2m exp (2miq), 
m=1 

as it was done in Sec. III, 

where 

Ho = (-J1 + J 2 + J a - J4)(Codo + dtCt) 

+ (11 + J 2 + J a + J,)(Ctdo + dtCo) 
and 

Hq = LiCqd_q - C!qd:) - LidqC_q - d!qC~) 

+ MiC!qd_q - Cqd~) + M_id!qC_q - dqCt) 
with 

Lq = (-J1 + J2 + J3 - J,)cos(q) 

+ (-J1 - J 2 + J3 + J,)i sin (q), 

Mq = (11 + J 2 + J3 + J,) cos (q) 

+ (J1 - J2 + J a - J4)i sin (q). 

Now for Ho it is simple to diagonalize these terms. 
With definitions given in the Appendix, 

Ho = (-J1 + J2 + J3 - J4)rx", 

+ (J1 + J2 + J3 + JJf3",. 

Consequently, by the operator, 

it is transformed as 

H~ = (J1 - J 2 - J a + J4)rx. 

+ (J1 + J 2 + J3 + J4)f3. 

= (J1 - J2 - J a + J,)(ctco + dtdo - 1) 

+ (J1 + J 2 + J a + J,)(ctco - dtdo) 

= (2CtCo - l)U(J1 - J2 - J a + J4) 

+ (J 1 + J 2 + J 3 + J 4)] 

+ (2dtdo - 1)U(J1 - J 2 - J a + J,) 

- (J 1 + J 2 + J a + J ,)]. 

On the other hand, for Hq as it was done in Sec. III, 
the vectors 

(

Cq) (ct) C!q C_q 
x = ~q and y = . d~ 

d_q d_a 

are introduced. With them, 

4 

Hq = L U mnCq)XmYn, 
m.n=1 
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where the matrix 

( 

0 0 -Mq Lq) 
o 0 -Lq Mq 

U(q) = 
-M_q -L_Q 0 0 

L_q M_a 0 0 

= - AaYla cos (q) + A2Y12 sin (q) + A4Y2a sin (q) 

+ A1Y22 cos (q), 
with 

and 

Al = (11 - 12 - la + 14), 

A2 = (11 + 12 - la - 14), 

Aa = (11 + 12 + la + 14), 

A4 = (11 - 12 + la - 14)' 

A four-step transformation, similar to the one done 
in Sec. III, will reduce the matrix U(q) into two sub
spaces. 

(1) The transformation operator is 

Tl = exp (i!7TYao) = cosh (!i7T) + Yao sin (ti7T) 

= 2_!(1 ; i 1: i ~ ~), 
o 0 1-i 0 

o 0 0 1-i 

and the corresponding linear transformation is 

and 

T I -a 2 -a 

( 

Cq -i!(1 + i)C'1 
C+ _ ~t(l + i)C+ 

X = T 1 x - t 
da - i (1 - i)da 

d!q - it(1 - i)d!'1 

( 

ct - tt(1 - i)ct 

I 
C-'1 - t!(l - i)C_q T- I 

y= lY- dt-!t(1 + i)dt 

d_q - it(1 + Od_a ; 

it is a canonical transformation. The matrix U(q), 
after this transformation by the relation (6) of Sec. I, 
can be easily shown to be 

U1(q) = AaY2a cos (q) - A 2Y22 sin (q) 

+ A4Yla sin (q) + A1YI2 cos (q). 

(2) The transformation operator is 

T2 = exp ( - 8Yao) 

~CTO) 
0 0 0 

exp (-8) 0 
o ) 0 exp (0) o ' 

0 0 exp (0) 

where 

cosh (20) = A3 cos (q) 
(A: sin a q + A: cos 2 q)t' 

sinh (28) = iA4 sin (q) . 
(A! sin 2 q + A: cos2 q)t 

Therefore, 

O*(q) = -8(q); 8( -q) = -O(q). 

The matrix U1(q) with the relation (5) becomes 

Ulq) = Al cos (q)[YI2 cosh (28) - iY22 sinh (20)] 

- A2 sin (q)[Y22 cosh (20) + iY12 sinh (20)] 

+ A3 cos (q)[Y23 cosh (20) + iYI3 sinh (28)] 

+ A4 sin (q)[Yla cosh (20) - iY2a sinh (20)] 

= Y2aCA! sin2 (q) + A: cos 2 (q)t 

+ Y12[A IAa cos2 q + A2A, sin2 q] 

(A! sin2 q + A: cos2 q)! 

Y22(A IA4 - A2A3) sin (q) cos (q) 
+:..::.=..:..-:..----=---=--=-------...:.~-;-:..::..:. 

(A: sin2 q + A: cos 2 q)t 

The corresponding linear transformation is 

and 

( 

ct - C: exp [O(q)] 

-1 I • C-a - C-a exp [8(q)] 
Y = T2 Y - dt - dt exp [-O(q)] 

d_a - d_a exp [-O(q)], 

which is canonical. 

(3) The transformation operator is 

T3 = exp [-i!7TYll] 

= 2-t ( ~ ~; ~; ~i) 
-i 0 0 1 

The matrix U2(q) with the relation (6) becomes 

Ua(q) == AqYoa + BqY23 + E'1Y22 , 
where 

Aq = (AlAs cos
2 

q + A2A4 sin2 q) , 

(A! sin2 q + A: cos 2 q)t 

Bq = (A! sin2 q + A: cos2 q)t, 
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and 

and 

which is canonical. 

(4) The last transformation operator is 

T4 = exp [-i!7TYlO] 

= 2-1( ~. 
o -i 

-I 

1 

o 
o -i 

o 
I 

o 

With the aid of the Appendix it can be easily 
diagonalized to become 

H; = (ctcQ + C!aC_Q - 1)[(Aa + BQ)2 + E:]l 

+ (dtdQ + d!Qd_Q - l)[(AQ - Ba)2 + E;]l. 

Furthermore, because 

and 

A (q = 0) = Al = (Jl - J2 - Js + J4), 

B (q = 0) = Aa = (Jl + J2 + Ja + J4), 

E(q = 0) = 0 

A_Q = AQ, 

B_Q = Ba, 

E-a = Ea, 

the total Hamiltonian finally becomes 

H" = L {(2CtCq - 1)H(Aq + Ba)2 + E:]l 
(alia) 1 

+ (2d~da - 1)![(AQ - Ba)2 + E!] }, 

and the spectra of elementary excitations of this model 
in terms of pseudofermions are, therefore, 

1:1.2 = U(Aa ± Ba)2 + E!]l, 
where 

The matrix Us(q), with the relation (6), becomes 
A = (AlAa cos 2 q + A2A, sin2

) 

Uiq) = A(q)yos + B(q)Ys3 + E(q)Y32 aI' 
(A; sin; + A: cos 2 qy 

Ba = (A; sin2 q + A: cos2 q)l, 
= iEa - (Aq + Ba) 0 0 

o 0 Aq - Ba iEa • 
E = (AlA, - A2Aa) sin (q) cos (q) 

a (A! sin2 q + A: cos2 q)l (

Aa + Ba - iEa 0 0) 

o 0 -iEa -(Aa - Ba) and 

The corresponding linear transformation is 

and 

( 

Cq - 2-1(Ca - ida) 

C+ - r1(c+ - id+ ) T I -a -a-q 
X = T 4 x - -1. 

da- 2 (da - ICa) 

d+ 2-1(d+ - ·C+ ) -a- -a I_q 

Y - 4 Y dt _ 2-1(d~ + iC~) ( 

ct - r1(ct + id~) 
_ T- l '_ C_Q - 2-1(C_a + id_a) 

d_a - T1(d_a + iC_a)· 

Consequently, the reduced Hamiltonian Ha becomes 

H~ = -(Aa + Bq)(CtCa + C!aC-a - 1) 

- EQi(CQC_a - C!Qct) 

- (Aa - BQ)(dtdQ + d!ad_Q - 1) 

+ Eqi(dad_a - d~ad~). 

Al = (Jl - J2 - Ja + J,), 

A2 = (Jl + J2 - J3 - J4), 

Aa = (Jl + J2 + Ja + J4), 

A4 = (Jl - J2 + Ja - J4). 

The result can be easily checked as foIIows: 

(i) For Jl =J2 , Ja=J4, A l =A4 =0, A2 = 
2(Jl - J3), and Aa = 2(Jl + Ja). Consequently, 

Aa = 0, 

Bq = 2(Jl -+ Ja) cos q, 
and 

Ea = -2(Jl - Ja) sin q. 

FinaIly, the spectra for this case is 

1:1.2 = [(Jl - Ja)2sin2q + (Jl + Ja)2cos2q]l, 

which agrees with the result obtained by Lieb, Schultz, 
and Mattis. 4 
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(ii) For J1 = J2 = J a = ]" = J, the spectra can be 
obtained from the above case, and it is 

€1.2 = 2J cos (q), 

which also agrees with the result obtained by Lieb, 
Schultz, and Mattis.4 

(iii) For J2 = 0 and J a = J4 , Al = A4 = J1 , A2 = 
J1 - 21a and Aa = J1 + 213, Consequently, 

A = J 1CJ1 + 2J3 cos 2q) , 

q [J: sin2 q + (Jl + 2J3) cos 2 q]t 

Bq = [1: sin2 q + (Jl + 2J3) cos 2 q]!, 
and 

Eq = 2J~ sin (2q) . 

[J: sin 2 q + (Jl + 2J3) cos 2 q]! 

Finally, the spectra are the same as the special case 
(iv) of Sec. III. 

From the spectra so obtained, one sees that inhomo
geneity in the coupling strengths affects the system in 
a similar way, as an anisotropicity does to it. 

CONCLUSION 

We present here three models of linear-lattice sys
tems to investigate the following several points. A 
mathematical scheme is derived to transform the 
Hamiltonians into the forms in which spin operators 
are replaced by fermion operators. Thus, the prob
lems become mathematically more tractable. The 

The size of the subspaces occupied by these oper
ators in the Hilbert space is 4 X 4. The set of (cx",; CXy, 
cxz) occupies the Cooper-pair subspace of 2 x 2, while 
the set of ({3x, {3y, {3.) occupies the single-particle sub
space of the remaining 2 x 2 subspace. Consequently, 
one can make out two kinds of transformations, one 
for each of these subspaces. 

(1) R transformation for the Cooper-pair subspace: 
(a) RI transformation: 

and 

CI = dl cos e + dt sin e, 
C2 = d2 cos e - dt sin e, 
cx'" ---+ cx~ cos 2e + cx~ sin 2e, 

CX z ---+ cx; cos 2() - cx~ sin 2() 

{3", ---+ {3~, 

{3y ---+ {3~ , 

{3z ---+ {3;. 

(b) R2 transformation: 

CI = d1 cos () + idt sin e, 
C2 = d2 cos e - idt sin (), 

, 
cx" ---+ CX" , 

points discussed are as follows: and 

CXy ---+ cx~ cos 2fJ - cx; sin 2e, 
CXz ---+ cx; cos 2fJ + cx~ sin 2e 

(1) Two more models, exactly solved here, show 
that the spectrum of elementary excitations of lattice-
spin systems in a I-dimensional case is in the form of 

[f(Jm , sinq, cosq)]!, 

as shown in a number of other exact calculations1.4 on 
the similar models and a numerical calculation5 on 
the full Heisenberg-Dirac model. 

(2) The contribution of an extended force range is 
studied in a small way here, as its importance was 
suggested by Kac, Hemmer, and Uhlenbeck. 7 

(3) "Inhomogeneity" in the coupling strength which 
can be created by some impurities in the system 
affects the system similarly as an anisotropicity in it 
does to the system. 

(4) Some models can be mathematically "de
coupled" into simpler ones. 

APPENDIX: THE BOGOLIUBOV-VALATIN 
TRANSFORMATION 

We are concerned here with a 2-fermion system for 
the following six operators: 

cx'" = C1C2 + ctct, {3", = ctc 2 + ctcl , 

cxy = i(C1C2 - ctct), {3y = i(CtC2 - ctcl ), 

cx. = ctc i + ctc2 - 1, and {3. = ctc2 - ctc l • 

{3" ---+ {3~, 
{311 ---+ {3~ , 
{3z ---+ {3;. 

(2) S transformation for the single-particle sub-
space. 

(a) Sl transformation: 

and 

C I = dt cos (j + d2 sin fJ, 

c 2 = d2 cos () - dt sin e, 
(Xx ---+ f3~, 

rJ.v ---+ p; , 
(/.z ---+ {3; 

{3x ---+ cx~ cos 2fJ + cx; sin 2fJ, 

/3v -+ a.;, 
{3z ---+ cx; cos 2(} - cx~ sin 2(}. 

(b) S2 transformation: 

c1 = dt cos () - id2 sin fJ, 

C2 = d2 cos fJ - idt sin (), 

ax -+ f3~, 

(X1I -+ p; , 
CX z -+ f3~ 
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Pl1 ---+ OC; cos 20 - oc; sin 20, 

P. ---+ oc; cos 20 + oc; sin 20. 

With these basic facts in mind, one immediately can 
utilize the following often used formula. 

Under the transformation by the operator exp (OX), 

(mZ + nY) ---+ Z[m cosh (20) - in sinh (20)] 

+ Y[n cosh (20) + im sinh (20)] 

= Z(m2 + n2
)', 

where m and n are constants and 

cosh (20) = m/(m2 + n2)', 

sinh (20) = in/(m2 + n2)'. 
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The accuracy with which a trial function 4> approximates the true wavefunction 11' is quantitatively 
assessed by the overlap integral S = (</> IlP). Upper and lower bounds to S therefore furnish direct criteria 
of accuracy of the approximation </> and also of the associated physical properties. The available literature 
on overlap estimates is assembled and critically discussed from a unified point of view, based upon a 
method of determinantal inequalities. In particular, the relationships among the various approaches are 
pointed up, several results are extended or generalized, and some new results are obtained. Finally, the 
various formulas are illustrated by numerical applications to some simple soluble problems. 

1. INTRODUCTION 

According to the fundamental quantum-mechanical 
SchrOdinger equation, a physical system represented 
by the Hamiltonian operator H has stationary states 
described by certain wavefunctions 1p which are solu
tions of the eigenvalue problem 

H1p = E1p, (1.1) 

where E is the energy of the state. Other properties of 
the system are calculated from this (normalized) 
wavefunction as 

(1p1 F 11p) == f 1p*F1p dr 

for the appropriate Hermitian operator F. 
In practice, however, it is almost never possible to 

actually solve Eq. (1.1) for systems of interest. 
Rather, one must seek some approximate wavefunction 
cfo which, it is hoped, resembles the true solution 1p as 

closely as possible. For example, following the Ritz 
variational procedure (for the ground state), one 
might adjust cfo in such a way as to minimize the energy 
integral (cfol H Icfo). Other properties (1p1 F 11p) are then 
approximated correspondingly as (cfol F Icfo). However, 
the approximate nature of this procedure raises several 
theoretical and practical difficulties: How serious 
are the errors remaining in the approximation cfo? 
How does the nature and extent of these errors effect 
the calculated values of various properties? What 
criteria may be employed to properly assess these 
effects? 

For quantitative purposes, the natural criterion of 
accuracy for an approximate wavefunction cfo is the 
approach toward unity of the overlap integral 

(1.2) 
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which may be taken real and positive. As S approaches 
unity, the integral J /4> - '1/'/2 dT tends to zero, and 4> 
and 'I/' become equal in the quantum mechanical sense 
of mean convergence. Since S cannot usually be known 
exactly, the accuracy of 4> is assessed instead by 
determining upper and lower boundsl to the true value 
of S. 

As discussed below (Sec. lA), the overlap S also 
enters the criteria of accuracy of specific properties, 
including the available formulas for error bounds to 
expectation values. Such formulas are found to depend 
in a very sensitive manner on the value employed for 
S, and this has lent new urgency to the problem of 
accurately estimating this important quantity .. 

Previous discussions of overlap estimates are 
actually fairly numerous, although widely scattered 
throughout the physical and mathematical literature. 
It appears that insufficient attention has been given to 
the problem of examining and comparing the various 
approaches, and some needless duplication of effort 
has resulted. We wish here to review the available 
Iiterature,2 assembling the known results and clarifying 
the relationships among them as far as possible from a 
unified point of view. New derivations are presented, 
and some new results are obtained in addition to 
extensions and generalizations of previous results. 
Some illustrative numerical applications are included, 
and various considerations for the practical applica
tions are pointed out. 

A. Accuracy of Physical Properties 

Clearly, the overlap integral S of (1.2) measures the 
"fit" of 4> to 'I/' only in some global sense, with all 
regions of configuration space weighted equally. But a 
particular property depends principally on regions of 
configuration space weighted most heavily by the 
corresponding operator F. Thus, ifr is the usual elec
tronic radial coordinate, it is known that the accuracy 
of (4)/ r-2 14» depends mainly on the accuracy of 4> in 
the region near the nucleus, whereas (4)/ r2/4» depends 
more sensitively on outer regions. 

For any particular operator F, therefore, one might 
consider the weighted overlap integral 

<4>1 F 111') = f 4>*FV' dT (1.3) 

in place of (1.2) as the natural criterion of accuracy. 
But for arbitrary Hermitian F, it has been shown3 that 
this quantity has upper and lower bounds given by 

(4)1 F IV') ~ S(F) ± ~F(1 - S2)t, (1.4) 

where ~F, the "width" of Fin the state 4>, is defined by 

(l.5) 

Here we have also introduced the abbreviation 

(Fi == (4)1 F l4>i, 

and (4)1 F 1'1/') is assumed real. 
According to (I.4), the weighted overlap integral 

(1.3) is bounded by quantities which depend only on 
the width I:1F and the "global" overlap S, or on upper 
and lower bounds Su ~ S ~ Sl. Suppose, for example, 
that (Fi is a positive number. Then, for the lower 
bound of (1.4), one uses the lower bound Sl' 

(4)1 F IV') ~ Sz(F) - I:1F(1 - S~)!. (1.6) 

For the upper member of (1.4), it is always safe to use 

<4>/ F 1'1/'> ~ Su(F) + I:1F(1 - S~)!, (1.7) 

but this result can often be improved. If, as is usually 
the case, 

(I:1F)2 1 - S~ 1 - S2 

(F>2 ~T~S2' (1.8a) 

then 

<4>1 F 1'1/') ~ S,(F> + I:1F(1 - S~)!, (1.8b) 

whereas, if 
(I:1F)2 1 - S2 1 - S2 

(1.9a) __ < __ u< __ 
(F>2 - S~ - S2 ' 

then 

(4)1 F 111') ~ Su(F) + I:1F(1 - S;)!. (1.9b) 

If neither (I.8a) nor (I.9a) can be assured, (1.7) must 
be used. 

Therefore, according to (1.6)-(1.9) the problem of 
assessing the accuracy of a calculated property is 
again closely related to the problem of determining 
accurate upper and lower bounds to the overlap inte
gral S. This conclusion persists when (1.4) is replaced 
by a somewhat sharper inequality involving matrix 
elements of FH and H2,4 or when one considers the 
available formulas for error bounds to expectation 
values.o 

B. Method of Determinantal Inequalities 

The principal method employed in the present 
analysis is based on the positivity of the Gram 
determinants. 6 A convenient geometrical language is 
possible when the wavefunctions are taken to repre
sent vectors in Hilbert space. 

Consider, therefore, a certain set ofn vectors IVl). 
Iv2 ), ••• , Ivn > which form the columns of an operator 
A. Then the (Hermitian) matrix AtA, with elements 

(1.10) 

is called the overlap (or metric) matrix of the system 
Ivi ). Clearly, AtA is positive semidefinite (i.e., has no 
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negative eigenvalues), At A ~ 0, since, for any 
vector Ix), 

(xl AtA Ix) = (Ax I Ax) = IIAxl12 ~ 0 

according to fundamental properties of the scalar prod
uct. Then also 

G = det IAtAI 20, (Lll) 

since G is the product of all eigenvalues of AtA. 
In (Lll), the determinant G = G{lv i )} is called the 

Gram determinant (or "Gramian") of the vectors 
Iv i ). Its value is just the squared volume of the paral
lelepiped generated by the Iv i ), and approaches zero 
as the vectors become linearly dependent. Since the 
positive semidefiniteness of At A is both necessary and 
sufficient for the existence of a set of vectors Iv i ) having 
the required norms and inner products (LlO), rela
tions such as (1.11) are the strongest possible restric
tions that can be placed on a particular element 
(Vi I V;) if all other elements of G are known. This 
"best possible" feature of the determinantal inequali
ties is of considerable practical importance in the 
analysis. 

A simple generalization may be mentioned. Let M 
be any Hermitian operator which is positive semi
definite, at least on the subspace spanned by the Iv i ). 

That is, if Pn denotes the projector onto the subspace 
spanned by Ivl ), Iv2), ••• , Ivn ), we assume that 

(1.l2) 

Then M (or, equivalently, M) may be adopted as the 
metric for a new inner product [ , ), 

[Vi' Vi] == (Vii M Iv;), 

which may be used in place of (1.10). This is equivalent 
to considering a new set of vectors 

Ii:!;) == M! Ivi ) 

in the original treatment (1.10)-(1.11), where the 
definition of the square-root operator M! is made 
possible by (1.12). 

A simple example may be used to illustrate the 
general procedure. Consider normalized vectors "P, </>, 
and X, where S} == ("P \ X) and S2 == (</> I X) are known 
but S == (</> .I"P) is unknown. If these numbers are 
taken to be real, the positivity of the Gramian, 
G = G(tp, </>, x), 

S S1 

G = S S2 20, 

S1 S2 
requires that 

S2 - 2SS}S2 + S~ + S~ - 1 ~ 0, 

which shows that S must lie between the two roots of a 
simple quadratic equation. The final result is7 

(1.13) 

which is the strongest possible bound for S in terms of 
the given Sl, S2. 

2. UPPER BOUNDS TO OVERLAP 

A. Rayner's Upper Bound 

As the first formula for upper bounds to the overlap 
S,8 we derive by the method of determinantal inequali
ties an effective formula due originally to Rayner.9 

For the eigenvalue problem H"Po = Eo"Po, we begin by 
obtaining a set of m normalized functions Xl , X2' ... , 
Xm' which are chosen to satisfy 

This might be done, e.g., by the Schmidt process or by 
diagonalizing an m X m representation of the opera
tor (H - EO)2. Then, for the set of vectors "Po, </>, 
(H - Eo)Xi' the Gramian G = G{"Po, </>, (H - Eo)x,} 
is found to be 

G= 

where 

1 S 0 0 0 

S 1 k1 k2 k3 

0 ki K1 0 0 

0 k: 0 K2 0 

0 k: 0 0 K3 

k i == (</>I H - Eo IXi), 

Ki == <Xii (H - Eo)2 IXi). 

2 0, (2.2) 

Using the Laplace expansion down the first two 
columns, the determinant (2.2) is easily evaluated as 

m m 

G = (1 - S2)II Ki + I(-I)ikj 
i=l ;=1 

x ( _1)i+1k; fi Ki) 2 o. 
U#< j) 

This is immediately rewritten as 

or 

(2.3) 
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which will be called Rayner's inequality. For the ex
cited state k, the corresponding result is 

I<C/> i1J!k)1 2 $; 1 - f I(c/>I H - Ek l;i)1
2 

(2.4) 
;=1 <xii (H - Ek) IXi) 

The special case m = 1 of (2.3), namely, 

S2 $; 1 - I(c/>I H - Eo Ix)1 2(xl (H - EO)2Ix), (2.5) 

was derived independently by Wang. 10 The special case 
X = c/> of (2.5), which may also be written in the form 

8 2 $; (tJ.H)2/«H - EO)2), (2.6) 

had been previously found by Combet-Farnoux and 
AIIard,ll and has been subsequently rediscovered (also 
written as a lower bound to the eigenvalue) by several 
authors. 12- 15 For future reference, we note also the 
more general form of (2.6): 

I(c/> i1J!k)1 2 $; (tJ.H)2/«H - Ek)2). (2.7) 

B. Gordon's Upper Bounds 

Recently, Gordon15 has obtained a sequence of 
upper bounds to 8 based on the method of moments 
and the theory of generalized Gaussian quadrature. 
In this method, one requires the sequence of matrix 
elements (H), (H2), ... , (H2n) and the eigenvalue Eo, 
but the resulting bounds were only defined implicitly 
[except for the first member, (2.6)] in terms of the 
solutions of a certain set of equations. It was shown 
subsequently by WanglO that the same results could be 
obtained by choosing the function 

X = I cnHnc/> 
n 

in formula (2.5), and determining the Cn to optimize 
the bound, but again the final result was not deter
mined. 

We present here an alternative derivation of Gor
don's bounds which generalizes his result (by omitting 
the restrictions that n in the moments (Hn) be sequen
tial and positive) and which displays the final result 
explicitly. 

Consider the Gramian G of the vectors 8-11J!0, 
Hic/>, Hicp, Hkcp, ... , where i, j, k, ... are arbitrary 
positive or negative integersl6

: 

S-2 E~ E~ Ek 
0 

E~ (H2i) (Hi+i) (Hi+k) 

~ O. (2.8) 
Eg (Hi+i) <H2i) (Hi+k) 

G= 
E~ (H'+k) (Hi+k ) (H2k) 

Now let D be the determinant obtained by deleting the 
first row and column of G, 

(H2i) (Hi+i) 

(Hi+i) (H2i) 
D== (2.9) 

and let - jj be the determinant obtained by setting the 
first element of G to zero, 

o E~ Eg 

m (H2i) (Hi+i) 

fj == _ E~ (Hi+i) (H 2;) (2.10) 

Then the bound (2.8) is immediately written explicitly 
as (note that D, D ~ 0) 

82 $;D/D. (2.11) 

Gordon's bounds are obtained as the special case 
{i,j, k"'} = {O, 1,2"'} of (2.11). This identifica
tion is assured, since both Gordon's bounds and the 
inequality (2.8) are known to be the best possible 
bounds that can be placed on 8 for the amount of 
information required, so that they must also be iden
tical. The result (2.11) is also readily generalized to 
any excited state 1J!,.. 

For atomic and molecular systems it is unfortunate 
that the moments (Hn) generally diverge for n > 2, 
because c/> behaves improperly at the singularities of the 
Coulomb potential. However, for other (nonsingular) 
potentials, the upper bounds (2.11) are apparently 
very effective, and even the special case (2.6), which 
requires only (H) and (H2), appears to give good 
results. 15 

It is well known that, when c/> is sufficiently accurate, 
even the integral (H2) may be quite difficult to com
pute. I7 In this respect, Rayner's bound (2.3) enjoys 
a considerable advantage, since the Xi may be chosen 
to simplify the calculation of (x;1 H 2 Ixi)' Particularly, 
the use of Gaussian functions may be considered. IS 

C. Upper Bounds of Rayner and Delves 

A principal disadvantage of the methods of Secs. 
2A and 2B is the requirement that the energy level Eo 
(or Ek ) be known independently.19 This difficulty is 
partially avoided in a method introduced by Rayner20 

and generalized subsequently by Delves. 21 
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In the Rayner-Delves method, one introduces an 
estimate oc which is at least closer to EIt , the eigenvalue 
of interest, than to any other eigenvalue. Then, for 
positive integer n, it is shown2! that 

1(4) I "P1t)1 2 ::;; «H - oc)-2nH)n/«H - oc)-2n)n-I, 

n=1,2,3,"', (2.12) 

and, further, that the bound sharpens monotonically 
with increasing n. 

For the ground state k = 0, if oc is also known to be 
a lower bound to Eo, one can follow the Rayner treat
ment to obtain the result 

S2::;; «H - oc)-n+!)n/«H - oc)-n)n-I, Eo> IX, 

(2.13) 

which requires moments of lower absolute order than 
does (2.12). Various similar formulas are also con
sidered by Rayner, but (2.13) is shown to be the most 
efficient. 

The conspicuous difficulty of the Rayner-Delves 
bounds is the required knowledge of negative-moment 
integrals such as «H - IX)-n). These are obtained in 

the form <In I 10> = <In-m 11m> from the solutions of 
an inhomogeneous set of equations 

(H - OC)/n+l = In, n = 0, 1,2,"', (2.14) 

where 10 == 4>. But the system (2.14) cannot usually be 
solved, and an approximation method, such as a 
variation-perturbation approach,22 must be intro
duced. Further, although only a minimum of in
formation about the energy level Elt is required, the 
convergence of (2.12) and (2.13) will in fact depend 
strongly on how well oc approximates the true eigen
value. Finally, since the system (2.14), if soluble, will 
be solved sequentially, it would be preferable to use a 
formula in which all lower moments could also be 
employed as additional information. 

To illustrate these formulas numerically, we con
sider the example (suggested by Rayner) of a particle 
in a I-dimensional box of unit length, with 4> = 1 and 
oc = 0. For comparison, we consider also the formula 

S2 ::;; (Eo - oc)n«H - oc)-n), 

n = 1,2,3,' .. , for oc < Eo, 

= 2,4,6, ... , otherwise, (2.15) 

derived from the Gramian of "Po and (H - oc)-n/24>, as 
well as the corresponding member of the generalized 
upper bound (2.11) which includes all moments up to 
the same order. Table I exhibits the upper bounds 
(2.13), (2.15), and (2.11) for various values of n. 
From this table, one observes the advantage of 
introducing Eo explicitly, and of using all lower 
moments available. 

TABLE I. Upper bounds to overlap for a particle in a I-dimen
sional box, as calculated from the formulas of the text. 

n Eq. (2.13) Eq. (2.15) Eq. (2.11) 

1 1.000000 0.822467 0.822467 
2 0.833333 0.811742 0.811053 
3 0.813841 0.810695 0.810582 
4 0.811031 0.810583 0.810570 

exact = 0.810569 

D. Additional Upper Bounds 

Recalling the discussion of Sec. IB, we introduce a 
new metric H - Eo (;;::: 0) and consider the vectors 4>, 
'lfk' The Gramian is 

G = I (H) - Eo (Ek - Eo)(4) l'lfk)1 > 0 
(Ek - Eo)('lfk 14» Ek - Eo -, 

which gives immediately an elementary upper bound 
for 1<4> I "Pk)1 2

, 

1(4) l'lfk)1 2
::;; «H) - Eo)/(Ek - Eo), (2.16) 

which is sometimes useful (cf. Sec. 3E). 
Finally, we wish to introduce an upper bound which 

does not require any knowledge of the energy levels 
Ek • Rather, it is necessary to know the true value (or 
an upper bound) of some other property ('If I F 1'If) 
which corresponds to a positive semidefinite operator 
F;;::: 0 and for which also <4>1 F 14» is too large. In 
such a case, one has formulas such as3 

('If I F 1'If) ;;::: [S(r) - ~r(1 - S2)~F/(F2V-l), (2.17) 

where F V denotes the vth power of F, and v is arbitrary 
so long as the expression in brackets is nonnegative. 
Then, clearly, the value of S for which (2.17) becomes 
an equality is surely too large, so that an upper bound 
to S is obtained as a solution of the equation 

S2(F2V) - 2S(r)(F2V- 1/b; <"PI F l'lfi 

+ ("PI F 1"P)(F2V-l) - (~PV)2 = 0. (2.18) 

A similar procedure may be used for any of the other 
available lower bound formulas analogous to (2. I 7).5b 

E. Numerical Applications and Discussion 

A simple numerical example may be used to suggest 
the relative effectiveness, in a particular case, of the 
several formulas discussed in Secs. 2A-2D. For this 
purpose, we choose the simple soluble problem of 
atomic hydrogen,23 so that the exact value of S = 
1(4) I "Po) I is known in advance. For 4>, we select the 
somewhat artificial function -

4> == (32/137T)~(I + r)e- 2r
, (2.19) 

for which 
S2 = 0.864. (2.20) 
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This is not a particularly good approximation to the 
true ground-state wavefunction 'IJlo = 1T-te-r

, but it is 
chosen in such a way that the integrals (H3) and (H4) 
do not diverge. This will permit an application of 
Gordon's bound (2.11), which, in the more general 
case, would not be useful. 

For the simple upper bound (2.6) of Combet
Farnoux and Allard, which uses values of (H2), (H), 
and Eo, the result is found to be 

S2 ~ 0.923, (2.21) 

and this is also the simplest case of Gordon's bound 
(2.11). If we include also (H3) and (H4) , the next 
member of Gordon's sequence of bounds (2.11) is 
found to give 

S2 ~ 0.916, (2.22) 

which indicates that the convergence of Gordon's 
bounds towards the true value (2.20) may be rather 
slow when !/J is not a good approximation to "Po. 

Both bounds above could be regarded as special 
cases of the Rayner formula (2.5) for suitable trial 
functions x. But,to further illustrate Rayner's formula, 
we consider here also the simple functional form 

X""" [1 + (oc - l)r]e-I%r, (2.23) 

where ", ..... /' denotes that the function is not yet 
normalized. Inserting (2.23) into (2.5) and choosing 
the parameter oc to optimize the bound, we obtain 

S2 ~ 0.865 (0( = 1.17), (2.24) 

and this result could be improved as much as desired 
by including additional variational functions Xi in 
(2.3). Rayner's formula (2.3) certainly appears to be 
the most flexible and practical means available of 
systematically improving the upper bounds when a 
knowledge of Eo is available. 

Finally,24 we consider the formula (2.18), which 
requires a knowledge of some property other than the 
energy. For this purpose, we choose F = r-1, which is 
overestimated in the approximation (2.19), 

(r-l) = ~;, ("Po! ,-1!'IJlO) = 1, 

atomic units being used throughout. The result of 
(2.18) is found to be 

S2 ~ 0.928 (11 = 0.39), 

which is not much worse than (2.21). In this special 
case, the true value of ("Pol r-11"Po) is known from the 
virial theorem if Eo is known, so that no additional 
experimental information is required. 

3. WWER BOUNDS TO OVERLAP 
An upper bound to the overlap S determines that 

the approximation !/J is still defective to at least a 
certain degree. However, it is practically more useful 
(and more reassuring) to determine how good, rather 
than how bad, is the approximation !/J. For this 
reason, the determination of lower bounds to S is 
usually of principal interest and importance. 

A. The Eckart Criterion 

In his important early paper on the theory and 
calculation of screening constants, Eckart25 estab
lished a simple relation which, in many respects, is 
still the best simple criterion of accuracy of an 
approximate ground state wavefunction. To obtain 
this relation, we note that the operator26 H - E1 is 
positive semidefinite in the subspace of functions 
orthogonal to "Po, so that 

Q(H - E1)Q ~ 0, where Q == I -!,"Po) ('Pol. (3.1) 

Then, immediately, 

which gives Eckart's criterion25 

(3.2) 

When terms of order (1 - S2)2 can be neglected, an 
inexact form of this relation (introduced by Eckart 
himself) is obtained 

(3.3) 

and this result is sometimes quoted as Eckart's 
formula. 27 However, there appears to be no compelling 
reason for this additional approximation, and we 
refer only to the correct form (3.2) as "the Eckart 
criterion." Formula (3.2) has often been rediscovered 
in the literature.28 

The Eckart criterion becomes exact in the limit as 
!/J is a linear combination of only "Po and "PI, as is 
apparent from the derivation. Furthermore, one con
firms readily that the inequality (3.2) remains true if 
Eo and E1 are replaced by any lower bounds to their 
true values, so that a strictly theoretical result is still 
possible if Eo and E1 are not known experimentally.29 

B. Weinberger's Formula 

An important generalization and strengthening of 
the Eckart relation was obtained by Weinberger.3o 

In this approach, one requires a knowledge of the 
n + 2 lowest eigenvalues Eo, E1 , ••• , En+! (or lower 
bounds) and an orthonormal set of approximations 
!/Jo, !/Jl' ... , !/In to the eigenfunctions "Po, "PI, ..• , "P ... 
It is assumed that the approximations !/Ji are solutions 



                                                                                                                                    

CRITERIA OF ACCURACY OF APPROXIMATE W A VEFUNCTIONS 2133 

of a secular determinant 

and that the corresponding Rayleigh-Ritz estimates 
Ji = (4),1 H l4>i) are at least sufficiently accurate that 

Eo ~ Jo ~ E1 ~ J1 ~ ... ~ E,. ~ I n ~ En+1. (3.4) 

Under these assumptions, Weinberger30 was able to 
show that 

S2 ~ En+1 - J o IT Ey - J o J. - Eo, (3.5) 
En+1 - EoY=l E. - EoJ. - Jo 

with S2 == 1(4)0 \1po)12. The corresponding result for 
excited state k is 

Formula (3.5) may also be put into the form 
S2 ~ S~, where the S~ satisfy the recursion 

S2 = En+1 - J 0 J n - Eo S2 
n n-1 

E"+1 - EoJ .. - J o 

and where S~ == (E1 - JO)/(E1 - Eo) is the Eckart 
overlap. Then, clearly, 

S~ ~ S~ ~ ... ~ S~ ~ S2, (3.7) 

which shows that the Eckart formula can always be 
improved if additional eigenvalues E; and Rayleigh
Ritz estimates Ji satisfying (3.4) are known. 

Unfortunately, relation (3.4) becomes increasingly 
difficult to satisfy in atomic and molecular systems 
because of the Rydberg-like "bunching" of the true 
eigenvalues. Furthermore, even if an infinite set of 
bound states could be accommodated in (3.7), the final 
result will not, in general, be exact, 

lim S~ 0;1: S2, 
...... 00 (3.8) 

because of the omitted continuum contribution, which 
may be very significant. In fact, even if all the esti
mates Ji were exactly equal to the true eigenvalues Ei 
for all i ~ 1, formula (3.7) would only yield the limit
ing result 

1· S2 Eoo - (H) 1m .. = , 
...... 00 Eoo - Eo 

(3.9) 

where Eoo is the first limit point of the bound spectrum. 
The right side of (3.9) is therefore the best result that 
could be achieved, even in principle, from Wein
berger's formula, and even this number is often far 
short of the true value of S2. In spite of these diffi
culties, Weinberger's formula often gives a worth
while improvement over the simple Eckart criterion 

when the required additional information is available; 
see Jennings and Wilson53 for a numerical example. 

For k = 1, formula (3.6) strongly improves the 
result 

1(4)1 11p1)1 2 ~ E2 - J1 _ E2 - Eo J1 - E1 
E2 - E1 E2 - E1 E1 - J 0 

obtained by Shull and L6wdin.31 

C. Analog of Rayner's Inequality; Wang's Inequality 

By introducing the new metric Q(H - E1)Q of (3.1), 
it is possible to follow closely the discussion of Sec. 
2A and obtain a lower bound to S which is the analog 
of Rayner's inequality (2.3). 

We introduce normalized functions Xl, X2, ... , Xm 
which are now chosen to satisfy 

(Xii (H - Eo)2(H - E1) IXi) = 0, i 0;1: j. 

Then with metric Q(H - E1)Q, the Gramian of the 
vectors 4>, (H - EO)Xi is found to be 

(H) - El + S2(E1 - Eo) 11 12 

Ii Ll 0 

G= 1: ~o, 

(3.10) 
where 

Ii == (4)1 (H - Eo)(H - E1) IXi), 

Li == <Xii (H - Eo)2(H - E1) IXi)' (3.11) 

and where we have used the familiar relations 

HQ - QH = 0, Q2 = Q, (H - Eo)Q = H - Eo 

in writing (3.11). The Gramian determinant (3.10) can 
again be readily evaluated, and one obtains 

S2 > E1 - (H) 

- E1 - Eo 

+ 1 .i 1(4)1 (H - Eo)~H - E1) IXi)1
2 

, 
E1 - EOi=1 (Xii (H - Eo) (H - E1) IXi) 

(3.12) 

which is the lower-bound analog of (2.3). Notice that 
each term in the summation is positive, so that (3.12) 
always improves on the Eckart result (3.2). 

The important special case m = 1 of (3.12) was 
first derived by WanglO as 

S2 > El - (H> 
- E1 - Eo 

+ 1 1(4)1 (H - Eo);H - E1) IX)1
2

, (3.13) 
El - Eo (xl (H - Eo) (H - £1) Ix) 
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and will be called Wang's inequality. It has the signifi
cant practical advantage that X may be chosen to 
insure that the integral (xl Hal x ) does not diverge, by 
a proper treatment of the singularities of the potential. 
Notice that (3.13) can become an equality when X is 
the portion of cp which is orthogonal to both "Po 
and "Pl' 

D. Gordon's Lower Bounds and Extensions; Kato's 
Bound 

Gordon15 has derived a sequence of lower bounds to 
S which complement the upper bounds of Sec. 2B, 
and which again require moments (Hn) of the Hamil
tonian. Wang lO has pointed out that the same results 
are obtained from formula (3.13) when X is taken to be 

and the Cn are chosen to optimize the bound. 
Here, we can again obtain the explicit (and more 

general) form of these bounds by considering the 
Gramian of the set of vectors cp, (H - EO)icp, 
(H - Eo)icp, .. " in conjunction with the metric 
Q(H - El)Q of (3.1). Following the procedure of 
Sec. 2B, the result is easily found to be 

S2 ~ El - (H) + 1 ~ , 
El - Eo El - Eo d 

(3.14) 

where d and d are the (nonnegative) determinants 
defined by 

h2i hi +i 

hi+i h2j 

° hi hj 

hi h2i hi+i 

-d= hj hi+i h2i (3.15) 

and where 
(3.16) 

Gordon's lower bounds are obtained as the special 
case {i,j,"'} = {I, 2,"'} of (3.14), but it is now 
also possible to consider arbitrary positive integer or 
noninteger values. 

The practical difficulty of these bounds, as in those 
of Sec. 2B, lies in the evaluation of (Hn) for n > 2. 
But when these integrals exist, one can obtain a 

substantial improvement over the Eckart criterion, as 
Gordon's numerical examples show. 

We remark finally that the bounds of this and the 
previous section can be easily extended in a natural 
manner to higher excited states k by adopting the 
metric 

Qk(H - Ek_l)(H - Ek+l)Qk' Qk = 1 - l"Pk) ("Pkl 

(3.1 7) 

in place of (3.1) in the derivations. The corresponding 
formulas are again easily written down, and are not 
presented here. 

Similarly, following Sec. 3A, one may consider the 
corresponding extension of the Eckart criterion, 

which gives32 

Formula (3.18) also results from an earlier formula of 
Kat033 

(3.19) 

if oc and ~ are chosen to make (3.19) as strong as 
possible under Kato's assumption, i.e., Ek - l ::;; oc ::;; 
Ek ::;; ~ ::;; Ek+!. Kat033 also noted that for the ground 
state k = 0, one could take oc = Ek - l = - 00, where
upon (3.18) and (3.19) reduce back again to the 
Eckart criterion (3.2). Formula (3.18) was more 
recently found also by Delves.2l 

E. Lower Bounds of Bazley and Fox 

Bazley and Fox12 have suggested lower bounds to 
S which start from the relation 

n 

(H) - En+! ~ L(Ek - En+!) I(cp I "Pk)1 2
, 

k~O 

which follows upon introducing the expansion cp = 
L (cp I "Pk)"Pk into (cpl H Icp) = (H) and replacing all 
Ek by En+! for k > n. This is solved for S2 = I (cp I "Po)1 2 

to give 

which now requires some upper bounds to the overlap 
integrals I (cp I "Pk)J2. For this purpose, Bazley and 
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Fox12 derived formula (2.7), which was then intro
duced into (3.20) to give their final result 

S2 > En+1 - (H) _ (t:J.H)2 i En+1 - E: . 
- En+1 - Eo En+1 - Eo k=1 «H - Ek) ) 

(3.21) 

But one might alternatively consider the upper 
bound (2.16) in place of (2.7). Indeed, it is readily 
verified that (2.16) is superior to (2.7) whenever 

(Ek - (H»«H - Eo)(H - Ek» ~ 0, (3.22) 

and, in turn, (3.22) is certainly satisfied at least for 
the first excited state k = I, since (H - Eo)(H - E1) 
has no negative eigenvalues. Thus, (3.21) is certainly 
strengthened if (2.16) is used in the k = 1 term of 
(3.20): 

S2 > En+1 - (H) _ En+1 - E1 . (H) - Eo 

- En+1 - Eo En+1 - Eo E1 - Eo 

- i En+1 - Ek 1<4> l1J!k)1 2 

k=2 En+1 - Eo 

= E1 - (H) _ i En+! - Ek 1(4) l1J!k)1 2• (3.23) 
E1 - Eo k=2 En+1 - Eo 

But formula (3.23) is clearly inferior to the Eckart 
relation (3.2), no matter what bounds are used for 
1(4) l1J!k)1 2, k ~ 2. Therefore, also, the Bazley-Fox 
bound (3.21) is always weaker than the Eckart criterion, 
even though it requires considerable additional in
formation «H2) and E2, ... ,En+1 in addition to 
Eo, E1 , and (H». This example indicates clearly the 
desirability of having bounds which are always the 
best possible for the amount of information employed. 

F. Bounds of Swanson and Bohenblust, Wilkinson, 
Falk, Nitsche, Weinberger, and Davis and Kahan 

In this section, we discuss various other bounds to 
overlap which have appeared principally in the mathe
matical literature. These are frequently obtained in 
connection with discussions of the effects of rounding 
errors, etc., in the numerical solution of eigenvalue 
problems, but arise also in a more general context. 

By introducing the usual expansion 4> = .L (4) l1J!k)1J!k 
into «H - A)2), replacing Ek by E1 for k > I, and 
neglecting the term containing Eo , 

«H - W) = .L 1(4) l1J!k)1 2 (Ek - A)2 
7<' 

~ S2(Eo - }.)2 + (E1 - A)2(1 _ S2) 

~ (E1 - A)2(1 - S2), 

one obtains the inequality, valid when A is at least 
closer to E1 than to any higher eigenvalue, 

S2 ~ I - «H - ),)2)/(E1 - ),)2. (3.24) 

This inequality was given by Swanson 34 and also by 
Wilkinson.35 The special case A = (H) of (3.24) was 
given by Wilkinson.36 However, the correct choice of 
), was not discussed by these authors. 

The proper choice of A is that value ,X which makes 
(3.24) as strong as possible, and, by differentiation, 
this is found to be 

;; = «H)E1 - (H2»j(El - (H». 

Noting that «H - l)2) = (l - (H»O - E1), we 
obtain the proper form of (3.24), 

which is the strongest result possible in this approach. 
However, (3.25) is recognized to be just the Eckart 

criterion (3.2) with the special choice of Temple'S 
lower bound37 •33 

Eo ~ (H) - (t:J.H)2j(El - (H» (3.26) 

for the eigenvalue EO .38 Clearly, therefore, (3.25) is 
always inferior to the Eckart criterion unless one has 
to use even a worse lower bound to Eo than the 
Temple formula (3.26). 

Formula (3.25) was also derived (under a slightly 
more general formulation) by Falk,39 who also re
derives formula (3.26) for eigenvalues. 

Another bound requiring the same information was 
given by Nitsche,40 who obtained 

(2 - 2S)t ~ t:J.H (1 + t:J.H ), (3.27) 
E1 - (H) E1 - (H) 

as well as an alternative form essentially using Wein
stein'sU lower bound (also derived here by Nitsche) 
for E1 • However, we may show that (3.27) is an 
easy consequence of (3.25). For this purpose, denote 

x == t:J.Hj(E1 - (H» 

so that (3.25) is written as S2 ~ (l + X2)-1. Then 

(2 - 2S)t ~ [2 - 2(1 + X2)-t]t 

~. [2 - 2(1 - x2j2)]t 

=x 

~ x(I + x), 

which is Nitsche's inequality (3.27). Clearly, (3.25) 
gives a much stronger result using the same informa
tion. 

A somewhat similar, but more complicated, for
mula was obtained in a report by Weinberger.42 

Adopting the notation 

z == «H - EO)2)tj(El - Eo), (3.28) 
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we may write Weinberger's formula42 in the form (for 
the ground state) 

(2 _ 2S)1 ~ _z_ 
1-z 

+ ( Z2 + _2_ [1 _ (1 _ z4i])1 
(1 - Z)2 1 - z 

== 6W (3.29) 

and we note the necessary assumption z < 1, which 
may be difficult to satisfy with simple trial functions 
q,. Developing the right side of (3.29) as a power series 
in z, we obtain 

Ew = 2z + 2Z2 + t z3 + 2Z4 + l.b5 + . . .. (3.30) 

Let us now compare this with the Eckart criterion 
(3.2), which requires less information. We first note 
the inequality 

(3.31) 

which is an easy consequence of Temple's formula 
(3.26). The Eckart formula (3.2) requires, 

i i 
(2 - 2S)1 ~ [2 - 2(1 - ~) ~ ~o)] == 6E , 

(3.32) 
and in turn, noting (3.31), 

6E ~ [2 - 2(1 - z2)i]i 

= z + tz3 + 1 i sZ5 + . . . . (3.33) 

Comparison of (3.30) and (3.33) shows that 6W ~ 
26E even when z is small enough for the Weinberger 
formula (3.29) to be effective. Thus, the Eckart 
criterion again proves to be superior. 

More recently, Davis and Kahari43 have derived four 
theorems giving error bounds for entire subspaces of 
eigenvectors. However, if we restrict attention to the 
usual case of the single, nondegenerate eigenvector "po, 

their results can be related to other approaches. Their 
"sin () theorem" is equivalent to (3.24), where A is 
an arbitrary estimate of the eigenvalue Eo, and their 
"tan () theorem" is identical to (3.25). They also 
present a "sin 2() theorem" which, in its strongest 
form, is 

S2 :.... ![1 + (1 _ 4(~H)2 )lJ'. 
c- 2 (E1 - EO)2 

(3.34) 

But (3.34) is again weaker than the Eckart criterion 
(3.2), since we can write Temple's formula (3.26) in 
the form 

and substitute into (3.34) to obtain 

![l + (1 _ 4(~H)2 )lJ 
2 (E1 - Eo)2 

~ ![1 + (1 _ 4«H) - Eo)(E1 - (H»)i
J 2 (E1 - Eo)2 

E1 - (H) 
= 

E1 - Eo 

Finally, their "tan 2() theorem" can be written as 

1 (1 - S2)1 ~H 
2S2 _ 1 ~ ~ Iy _ (H)I ' (3.35) 

where y is the lowest eigenvalue of the operator 

(1 - Iq,) (q,I)H(1 - Iq,) (q,i). 

In practice, however, the eigenvalue y is usually un
known, so that (3.35) is not presently a practical result. 

G. Lower Bounds of Rayner and Delves 

With the help of the quantities 

an == «H - or.)-n), n = 0, 1, 2, ... , (3.36) 

with or. < Eo, one can also get lower bounds to S to 
complement the upper bounds of Sec. 2C. Rayner20 

gives the inequality 

S2 ~ 1 a:=~ {1 + [1 _ 4n(Eo = or.)n-1 a:-
1J!}, 

2 an E1 or. an-1 

(3.37) 

which is also discussed by Delves.21 Combining (2.13) 
with a slightly weakened form of (3.37), we infer 

(3.38) 

which shows the convergence of the upper and lower 
bounds as or. ---+ Eo. Rayner and Delves also derive 

S2 ~ [(Eo - oc)n/(E1 - Eo)][(El - or.)an - an-I] 

(3.39) 

and various extensions to excited states are considered, 
as well as the use of upper and lower bounds to Eo 
and E1 • 

Table II presents some numerical applications of 
formulas (3.37) and (3.39) to the particle in a box 
considered in Sec. 2C, with q, = 1 and or. = O. For
mula (3.37) is not so strong, but the convergence of 
(3.39) is again quite rapid in this simple example, the 
results comparing fairly well with the upper bounds of 
Table I. 
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TABLE II. Lower bounds to overlap for a particle in a I-dimen
sional box, as calculated from the formulas of the text. 

n Eq. (3.37) Eq. (3.39) 

1 0.763289 
2 0.808168 
3 0.520890 0.810346 
4 0.742789 0.810546 

exact = 0.810569 

However, the integrals an of (3.36) are seldom avail
able, and formulas based on these integrals are not 
yet of practical utility in atomic and molecular prob
lems. 

Braun and Rebane44 have recently derived a related 
expression, in which the variational functional J for 
arbitrary f,45 

J == <I I cp)2 s (cpl (H _ ocr1 Icp) = a
1

, 

(fl H - oc If> 
has been used in place of the integral a1 in the n = 1 
case of (3.39), 

S2 ~ Eo - oc [(E1 _ oc)J - 1] 
E1 - Eo 

= Eo - oc [<I I cp)2(E1 
- OC) - IJ, (3.40) 

E1 - Eo Ef - oc 

with Ef == <II H If), and with f taken normalized 
without loss of generality. Braun and Rebane note 
that (3.40) reverts back to the Eckart criterion (3.2), 
for f = cp and oc ->- - 00. Goscinski46 has subsequently 
obtained a generalized form of (3.40), in which f is 
taken to be an optimal linear combination of linearly 
independent basis functions. 

When the parameter oc is chosen to optimize the 
bound, the Braun-Rebane result (3.40) is found 47 to 
be equivalent to the lower member of (1.13), 

S ~ S,(cp If> - [(1 - S;)(1 - (cp 1f>2)]!, 
in the special case when Sf == (fl"Po) (or a lower 
bound) has been evaluated from the Eckart criterion. 

H. Numerical Applications and Conclusion 

As in Sec. 2E, we wish to illustrate the lower-bound 
formulas numerically with an application to the simple 
representative example of the hydrogen atom. Again, 
</> is chosen to be the function (2.19) with 

S2 = 0.864. 

In this case, the simple Eckart criterion (3.2) gives 
the rather poor lower bound (note that Eo = -0.5 
and El = -0.125): 

S2 ~ 0.692, (3.41) 

which shows that the contribution to cp of "P2 , "Ps, ... is 
still very substantial. On the other hand, the weakened 
relation (3.25), which requires (H2) but not Eo, would 
lead to the much weaker result 

S2 ~ 0.297. 

Similar results could also be cited for the other 
formulas discussed in Sees. 3E and 3F. 

We cannot immediately apply Weinberger's formula 
(3.5), since we would need to have cp as one root of a 
secular determinant whose zeros interleave the lowest 
true eigenvalues according to (3.4). However, Wein
berger's formula (3.5) could never surpass the hypo
theticallimit (3.9), 

lim S~ = 0.769, 
n-+ 00 

which is still rather far below the true answer. This 
example illustrates the severe practical disadvantage 
of Weinberger's formula (3.5) in many applications of 
interest. 

In applying Gordon's lower bound formulas (3.14), 
we can only compute the first member of the sequence, 
which requires (H2) and (H3), and which gives the 
result 

S2 ~ 0.775. (3.42) 

This certainly improves the Eckart result (3.41), but 
still lies farther from the true value than do either of 
the corresponding upper bounds (2.21), (2.22). 

Finally, for Wang's inequality (3.13), we again 
choose for X the simple function (2.23), 

which will give finite matrix elements over H3. 
Choosing the parameter oc to optimize the lower 
bound (3. I 3), we obtain 

S2 ~ 0.857 (oc = 1.03). (3.43) 

Still better results could be obtained by using the more 
general formula (3.12) in conjunction, for example, 
with the functions 

Xl i"'o.I Xl' 

X2 ,......, XI - X2 <XII (H - Eo)2(H - E1) IXI)/ 
(Xl! (H - Eo)2(H - E l ) !X2), 

where Xl and X2 are arbitrary so long as the required 
integrals exist. Thus, it appears that Wang's inequality 
(3.13) and the more general formula (3.12) are the 
most flexible and practical means available of calcu
lating accurate lower bounds to overlap when Eo and 
El are known. 
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If rp is so complex that the integrals (rpl H2 Ix) are 
still difficult to evaluate, one may adopt an alternative 
procedure: (a) choose some simpler function p 'close' 
to rp so that Sl == I(~ I rp)1 is near unity and (rpl H 2 1x) 
is easier to compute; (b) use formulas (3.12) or (3.13) 
to calculate a lower bound to S2 == I (~ lV'o) I; and (c) 
use formula (1.13) to obtain the final lower bound for 
S = I(rp lV'o)l. 

Returning to our numerical example and com
bining (2.24) with (3.43), we conclude finally 

S2 = 0.861 ± 0.004, 

which would be a useful accuracy for many purposes. 
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A discussion is given of the structure of a physical theory and an "ideal form" for such a theory is 
proposed. The essential feature is that all concepts should be defined in operational terms. Quantum (and 
classical) mechanics is then formulated in this way (the formulation being, however, restricted to the 
kinematical theory). This requires the introduction of the concept of a mixed test, related to a pure test (or 
"question") just as a mixed state is related to a pure state. In the new formulation, the primitive concepts 
are not states and observables but certain operationally accessible mixed states and tests called physical. 
The notion of a C·-system is introduced; each such system is characterized by a certain C*-algebra. The 
structure of a general C*-system is then studied, all concepts being dei1.ned in terms of physical states and 
tests. It is shown first how pure states and tests can be so defined. The quantum analog 'of the phase space 
of classical mechanics is then constructed and on it is built a mathematical structure, called a q-topology, 
which is a quantum analog of the topology of classical phase space. Mathematically, a q-topology is 
related to a noncommutative C·-algebra as an ordinary topology is related to a commutative C*-algebra. 
Some properties of the q-topology of a C*-system are given. An appendix contains some physically 
motivated examples illustrating the theory. 

1. INTRODUCTION 

Formulations of the foundations of quantum me
chanics, although they may be adequately rigorous 
from a mathematical point of view, are frequently 
seriously lacking in the attention that is paid to the 
rules of .interpretation by which the mathematical 
assertions of the theory are translated into experi
mentally meaningful statements concerning the physi
cal world. In this paper, which represents a summary 
of work that will be published in detail elsewhere,! 
we attempt to remedy this defect. This results not only 
in a more satisfactory theory, but the interplay be
tween the physical and mathematical aspects reveals 
features which are not present in the conventional 
formulations. 

Exactly what should be required of a physical theory 
in respect of the rules of interpretation is itself not 
clear. This is discussed in Sec. 2. We arrive at the 
conclusion that important advantages accrue to a 
theory in which all concepts are defined in terms of a 
few primitive concepts, these being given precise 
interpretations in practical (or operational) terms. 
The requirement concerning the interpretation of the 
primitive concepts imposes a severe limitation on the 
choice of these concepts and thus on the acceptable 
formulations of the theory. 

In Sec. 3, we apply these considerations to quantum 
mechanics. It is common, in formulations of this 
subject, to assume the physical interpretations of the 
concepts of classical mechanics to be already clear. 
While this attitude may be valuable from a didactic 
point of view, it is not logically satisfactory since, 
fundamentally, quantum mechanics is not a sophisti
cated variation of classical mechanics but should be 

regarded rather as the basic theory from which 
classical mechanics arises as a limiting case. For this 
reason, in choosing primitive concepts for quantum 
mechanics, we reject coordinates and momenta and 
the like and examine the concepts of state and test (i.e., 
question in the terminology of Mackey2). We discuss 
at some length the interpretation of these terms, 
assigning them operational meanings not dependent 
in any way on classical mechanics. (Indeed, our for
mulation of quantum mechanics includes classical 
mechanics as a special case.) 

As a result ofthis discussion, we conclude that by no 
means can all states and tests (as the terms are nor
mally understood) be given an effective operational 
interpretation; those that can we designate as physical. 
All physical states are mixed states; this is generally 
recognized. On analyzing physical tests, we find that 
they are not represented at all in conventional 
quantum mechanics. It is necessary to introduce a 
new concept, that of a mixed test. Mixed tests have a 
natural place in the theory, being related to ordinary 
(or pure) tests just as mixed states are related to pure 
states. Moreover, with the aid of mixed tests it is 
possible to form weighted means of tests in the same 
way as for states. Physical tests are normally mixed. 
The physical tests of a given quantum mechanical 
system form a distinguished set which plays a major 
role in our analysis-in a sense characterizing the 
particular system. 

Since we are able to give an operational inter
pretation only of physical states and tests, it follows 
from the principles developed in Sec. 2 that these 
should be taken as the primitive concepts. Thus, we 
are faced with the program of reformulating both 

2139 
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classical and quantum mechanics in this way. In Sec. 
4, we indicate how this may be done in the case of 
classical mechanics, considering in particular the way 
in which the concept of phase space can be constructed. 
On examining conventional quantum mechanics from 
the same point of view, we observe that, although it 
contains an analog of phase space, this analog carries 
nothing corresponding to a topological structure. 
However, comparison with the case of classical me
chanics indicates a procedure for defining such a 
superstructure. 

Sections 5-8 are concerned with the implementation 
of this program. In Sec. 5, the concept of a C*-system 
is introduced. This is a (classical or quantum) me
chanical system whose physical tests are isomorphic to 
a dense subset of the region {a: a E A, 0 S a S I} in 
a C*-algebra A. Some justification is given for the 
claim that all systems arising in practice are C*-sys
terns; further support for this proposal is given in the 
Appendix. The concept of a C*-system, introduced 
originally by Segal,a has been discussed frequently in 
the literature,4-6 usually, however, in the context of 
quantum field theory and often with little physical 
justification. 

In accordance with the policy of defining everything 
in observable terms, Secs. 6 and 7 are devoted to the 
construction, for an arbitrary C*-system, of pure states 
and tests. In the cases of classical mechanics over a 
compact phase space and of quantum mechanics over 
a finite-dimensional Hilbert space, the construction 
yields exactly the usual pure states and tests-in the 
classical case, for instance, we get just the points and 
subsets of phase space. In other cases, there appear in 
addition certain "nonconventional" states and tests. 
In the classical case this is related to the occurrence of 
a certain compactification of phase space. (It turns 
out later that the situation in the quantum-mechanical 
case is analogous.) 

In the case of a quantum-mechanical system, the 
pure tests may be identified with the projections of a 
certain W*-algebra Aw , namely, the weak operator 
closure of the reduced atomic representation7 of the 
C*-algebra A. They form a lattice which is the quan
tum-mechanical analog of the lattice of all subsets of 
(the relevant compactification of) phase space and 
which we call a q-space. 

In Sec. 8, we introduce an analog of a topological 
structure in this q-space by distinguishing certain ele
ments as open, these distinguished elements being 
determined by the algebra A. The q-topology which is 
defined in this way turns out to have many of the 
properties of an ordinary topology. In particular, the 
q-space is compact Hausdorff and even normal, 

the definitions of these terms being natural extensions 
of the usual topological definitions. Moreover, the q
space equipped with its q-topology determines the 
C*-algebra A: Indeed, the real part of A consists 
exactly of all "q-continuous" operators in A w , the 
term q-continuous being here defined in terms of the 
spectral resolution of the operator in just the same way 
as continuity of a function is defined in terms of its 
inverse map. 

In the Appendix we consider several interpretations 
of a particular quantum - mechanical system, thus 
illustrating the sort of physical arguments that can be 
used to identify the physical states and tests. These 
examples also serve to support the contention that it is 
C*-systems which arise in practice and to clarify the 
nature and significance of the pure states and tests. 
Finally, they provide some concrete examples of 
q-spaces and q-topologies. 

2. THE STRUCTURE OF A PHYSICAL 
THEORY 

Although a physical theory normally has an under
lying mathematical structure, it can be distinguished 
from a mathematical theory in that it makes assertions 
about the physical world which can be tested by ex
periment. Of course, a physical theory cannot be 
proved experimentally; however, it is usually claimed, 
as a necessary condition for an acceptable theory, that 
it should be amenable to experimental test: that is, 
that it should lay itself open to the possibility of 
refutation by experiment. This does not, of course, 
imply anything about the truth of the theory; it merely 
indicates a sense in which it is meaningful. 

The requirement of being acceptable in this sense 
has an important consequence. To explain it, let us 
consider an example. Suppose a theory has been put 
forward which gives a particular value for the fine 
structure constant. An experimental determination, 
made with great accuracy, yields a different value and 
the experimenter accordingly claims to have refuted 
the theory. The theorist replies that this is not so-the 
experiment, as performed, is not a test of the theory 
since certain effects have not been taken into account. 
He describes these effects and shows how they should 
be allowed for, concluding that there is, in fact, no 
contradiction with his theory. The theory has thus 
been saved. Moreover, the theorist is still in a position 
to repel further attacks: it is only necessary for him 
to have enough ingenuity to think, on each occasion, 
of other effects that may be invoked to explain dis
crepancies between theory and experiment. 

It is clear that this situation is unsatisfactory. In
deed, from a strict point of view, the theory appears to 
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be irrefutable: We have no sure way of refuting it. It 
must therefore be regarded as unacceptable. Notice 
the origin of this unacceptability: It is the fact that, in 
its original formulation, the circumstances under 
which the theory is applicable were not precisely stated. 
For it is just this feature which allows the theorist to 
save the theory from apparent refutation. 

We conclude from this argument that, to be accept
able in the sense explained above, a physical theory 
must be accompanied by instructions explaining in 
detail the experimental circumstances under which it 
may be applied. Naturally, these rules ofinterpretation 
must be to some extent vague, if only because they 
must be expressed in common language, but they 
should be made as precise as possible, since the 
acceptability of the theory varies directly with the 
precision of the instructions. 

We arrive at the same conclusion concerning the 
existence and precision of rules of interpretation if we 
consider practical applications of the theory. The 
considerable investment that may be involved in an 
engineering application, for instance, will be in jeop
ardy unless the conditions of applicability of the theory 
are clearly understood. 

To minimize the possibility of a misinterpretation 
of the theory, the rules of interpretation should use 
only the simplest of terms, all concepts whose experi
mental significance can be further clarified being ex
plained in terms of simpler concepts. Here, "simpler" 
should be understood to mean "more closely related 
to experience"-or, as we say, more direct-for we 
are concerned not with what the experimenter may 
think the terms "mean" but with what he should 
actually do in using the theory. An account of the 
rules of interpretation that fulfills these requirements 
is called adequate. 

It is clear that an adequate account of the rules of 
interpretation of a physical theory is a lengthy affair. 
For instance, in the case of a theory of the hydrogen 
atom, it may well involve a complete description of 
how hydrogen is to be prepared, or at least recog
nized. In fact, a general understanding of the rules of 
interpretation of physical theories is exactly what is 
conveyed in the training of an experimental physicist. 
(Hence, the common attitude of regarding the details 
of the application of a physical theory as being a matter 
for the experimentalist.) An adequate account of the 
rules of interpretation of a given physical theory can 
thus be regarded as a specialist training manual in 
the application of that theory. Since potential users of 
this manual may have widely varying backgrounds, 
the manual should assume a minimum background 
knowledge-ideally none at all. Therefore, it should 

itself contain any general training in elementary 
physical concepts that is required for the elucidation 
of the more sophisticated concepts appearing in the 
particular theory. 

Of course, it is quite unrealistic to demand that 
every formulation of a physical theory should be 
accompanied by an adequate account of the rules of 
interpretation. In fact, frequently, a formulation of a 
physical theory is accompanied by no indication of the 
rules of interpretation at all. There is no harm in this, 
provided it is realized that the theory, as thus pre
sented, is incomplete; it becomes complete only when 
a specific set ofrules of interpretation is adjoined. For 
instance, a theory of the fine structure constant would 
have to be completed by a careful description of at 
least one way in which this constant may be measured. 
(If several ways are described, then the completed 
theory is asserting that these distinct procedures yield 
the same result. If not, then it makes no such asser
tion.) The various rules of interpretation that can be 
adjoined in this way give rise to different completions 
of the original theory. One cannot test this theory 
itself; only the completions can be tested. Thus, only 
the completions can be acceptable, and only to them 
can the notions true or false be meaningfully applied. 
Consequently, although it is very inconvenient in 
practice to give explicit rules of interpretation for 
every physical theory, for the precise formulation of 
any theory it is essential to do just this. 

The task of adjoining an adequate set of rules of 
interpretation to an incomplete physical theory is 
facilitated if the theory can first be formulated so that 
two conditions are satisfied. The first of these-which 
is also desirable for purely mathematical reasons
is that all the concepts in the theory should be defined 
in terms of a few primitive concepts. If this condition is 
satisfied, it is then sufficient to give interpretations to 
these primitive concepts alone. For then an interpreta
tion is automatically determined for every other con
cept. (For instance, in the case of Euclidean geometry, 
an interpretation of circle is uniquely determined once 
interpretations for pOint and distance have been given.) 
Indeed, it is desirable that no other concepts should be 
given formal interpretations since this would, in any 
case, be redundant and could only produce confusion. 
The second condition is that the primitive concepts in 
the theory should be so chosen that their inter
pretations (which we shall call the primitive physi
cal concepts) are as "direct" as possible, for only 
then is it possible to give an adequate account of 
these interpretations which is susceptible to the 
least possible extent to the vagaries of ordinary 
language. 
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We summarize these desirable features of a physical 
theory: 

(1) The theory should consist of a mathematical 
structure together with a set of rules of interpretation. 

(2) The mathematical structure should be expressed 
in terms of axioms and primitive concepts. 

(3) The rules of interpretation should give inter
pretations for all the primitive concepts and only these 
concepts. 

(4) The physical concepts referred to in the rules of 
interpretation should be as direct as possible. 

We shall refer to a theory formulated in accordance 
with these requirements as an ideal physical theory.s 
Our main concern in this paper is to give an ideal 
formulation of quantum mechanics. 

In order to apply an ideal physical theory, an 
experimenter need not be in full possession of his 
faculties. Since the theory refers only to certain 
primitive physical concepts, it is sufficient that he 
should be aware only of these aspects of his environ
ment. We may even imagine an observer whose physi
cal experience consists of these concepts alone; he is 
the simplest being to whom the theory makes sense. 
We call such an observer a primitive observer for the 
theory. Not only is a primitive observer able to under
stand and use the theory, but in principle he could 
develop it for himself, by extracting and formalizing 
systematic properties of his experience. We can often 
reach a deeper understanding of a physical theory by 
imagining its being developed in this way. 

3. THE FUNDAMENTAL CONCEPTS OF 
QUANTUM MECHANICS 

In the formulation of quantum mechanics, we can 
recognize two distinct stages. First, there is the so
called kinematical theory, usually expressed in terms 
of the concepts of state and observable. Secondly, there 
is the dynamical theory, in which the time develop
ment of quantum-mechanical systems is discussed. 

A complete formulation of the dynamical theory in
volves giving an adequate account of the interpretation 
of the concept of time: i.e., we are faced with the 
problem of giving an explicit description of the experi
mental procedures involved in measuring a time inter
val. This is clearly a nontrivial matter. (Even more 
severe problems arise if we attempt to include other 
concepts such as space, particle, momentum, etc.) Of 
course, it is possible to ignore this difficulty-to 
pretend that the notion of time and the procedure to be 
used in measuring it are perfectly clear-and this is 
commonly done. But this entails a serious limitation on 
the acceptability of the theory: The experimental 
meaning of any assertion of the theory that involves 

the concept of time will be obscure. Because of these 
difficulties we restrict ourselves here to the kinematical 
theory, into which the notion of time does not 
enter.2•9- 11 

An immediate simplification is possible.2•9- 11 For 
the formulation of quantum mechanics, it is sufficient 
to consider only observables that can take just two 
values, which we may denote 0 and 1. Mackey calls 
such observables "questions"; we call them tests. 

The restriction to tests is not so severe as might at 
first be supposed. For, in practice, an experiment set 
up with the object of measuring a continuous variable, 
say the coordinate X of a particle, measures not X but 
a functionf(X) which takes only finitely many values. 
For instance, if the experiment is carried out by 
allowing the particle to trigger one of a row of 100 
counters,/(X) may be taken to be the number of the 
counter that responds. Similarly, if the measurement is 
carried out by microscopic examination of tracks in a 
photographic plate, only a finite range of values of the 
coordinate X are covered and the experimenter records 
his results to only a finite number of decimal places. 
Thus most, if not all, experiments in physics, in fact, 
measure observables which have a spectrum consisting 
of a finite number of points, and our limitation is only 
to restrict this number to two. 

We denote tests by a, b, c,'" and states by x,y, 
z, .. '. The experiment consisting of applying the 
test a to a system in the state x is denoted [x, a] and 
is called an elementary experiment, and the value (0 or 
1) which is obtained when this experiment is carried out 
is referred to as the outcome. 

A typical assertion of the kinematical theory is now 
of the following form: 

The probability is p that, when the test 
a is applied to a system in the state x, the (1) 
outcome will be 1. 

If we wish to give an adequate formulation of the 
theory, we must give detailed interpretations of the 
terms involved in each such assertion so that it acquires 
a precise experimental meaning-i.e., in such a way 
that it is refutable by experiment. A difficulty at once 
arises in connection with the interpretation of the 
term "probability." Strictly speaking, no finite number 
of executions of the experiment [x, a] will serve to 
refute the assertion (1); this assertion refers rather to 
the relative frequency of positive outcomes in a long 
series of repetitions of the experiment [x, a].12 Clearly, 
this difficulty is common to every theory which asserts 
probabilities and is an essential limitation on the 
requirement that such a theory be refutable. Evidently, 
then, our original requirement (Sec. 2) that a physical 
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theory should be refutable is too strong. We therefore 
now relax this requirement on a physical theory and 
demand only that it should ascribe probabilities to the 
outcome of experiments which (a) are described so 
clearly and completely that there can be no doubt, on 
each occasion, as to whether or not the experiment has 
been carried out and what the outcome is and which 
(b) are,in fact, capable of being carried out. 

Let us now apply these considerations to the asser
tion (I). Any procedure for carrying out the elemen
tary experiment [x, a] consists of two parts. In the 
first part, a system is prepared in the state x; in the 
second part, the test a is applied to this system. 
Applying the requirement (a), we conclude, in partic
ular, that it should always be clear whether or not a 
certain procedure constitutes a preparation of the 
system in the state x.l4 Thus, we cannot say we know 
the state unless we know the corresponding class of 
procedures. Conversely, this class of procedures is all 
that we need know about x for the interpretation of 
every assertion of the form (l) involving x. Conse
quently, we now define a state of a system to be a 
(nonempty) collection of methods of preparation of the 
system, where by a method of preparation we mean a 
document giving detailed instructions for the prepara
tion. In the same way, we define a test of a system to be 
a collection of methods of analysis, where by a method 
of analysis we mean a document giving detailed 
instructions for the execution of the test; this is, of 
course, a procedure which can be applied to the 
system no matter what its state may be and results in 
an outcome, either 0 or 1. 

The execution of the experiment [x, a] now involves 
arbitrarily selecting a document from the collection x 
and a document from the collection a. The pair of 
documents constitutes a complete set of instructions 
for the experiment [x, a]. These documents must be 
sufficiently explicit that it is perfectly clear in each 
particular case whether or not the instructions have 
been follov.ed. Of course, we do not demand that the 
document uniquely specifies the actions that the experi
menter is to perform: there will always be experimental 
details that are not prescribed. Thus, a document 
itself really corresponds to a class of experimental 
procedures. We say that a document A is a refinement 
of another document B if it is agreed that every experi
mental procedure which satisfies A also satisfies B. 
This relation of refinement clearly determines a partial 
ordering of the documents. It is clear that, without 
loss of generality, we may assume that every refine
ment of a document that belongs to a state x also 
belongs to that state (and the same for tests). 

Two further points of clarification should be made. 

First, it must be granted that to follow the instructions 
on a pair of documents for an elementary experiment 
does not necessarily yield an "outcome." If, for in
stance, the laboratory is struck by a thunderbolt 
during the work, the experiment will be vitiated. How
ever, the documents themselves should contain instruc
tions for recognizing whether any such disturbance has 
occurred and give a signal "experiment void" if it has. 

The second point concerns the relative nature of 
states and tests. Of course, different experimenters 
following the same instructions at different places or 
at different times do not produce states that are 
objectively alike. The notion of state is thus a relative 
one: "the system is in the state x" asserts really a 
relation of the system to the observer who has pre
pared it. In general, it is not in this state for any other 
observer, or indeed for the same observer operating at 
a later time. Accordingly, if a test is subsequently to be 
made on the system, it must be carried out by the same 
observer, and the time of commencement of the opera
tions constituting the test must be related to the time 
during which the method of preparation was effected.io 

These observations show that there must be some 
reference in the documents to the times at which the 
instructions should be carried out. The times referred 
to cannot be absolute times, since it is essential that 
every experiment can be repeated; they must be 
relative to the observer. To be more specific, we may 
envisage the following situation. Each observer is 
equipped with a reference frame and a clock. Between 
experiments he may move the reference frame and 
reset the clock as he wishes, but neither must be 
disturbed during the course of an experiment. To 
carry out the elementary experiment [x, a], he first 
chooses documents from the collections x and a to 
form a set of instructions for the experiment and sets 
his clock to a time earlier than any referred to on these 
documents. Then he carries out the instructions. 

We can avoid the possibility that the instructions 
given in the two documents might conflict with each 
other by supposing the instructions on all documents 
to be such that every method of preparation is com
pleted before time zero, while every method of anal
ysis starts after this time. 

We now return to the interpretation of the term 
"probability" in the assertion (1). Let us take the view 
that all the applicable statements of a physical theory 
can be expressed in terms of assertions of this form. 
Then, from a pragmatic viewpoint, we may say: 

The theory held by any phYSicist is the set of all 
assertions of the form (1) to which he subscribes. 

What commitment is assumed by the theorist who 
makes the assertion (1)? If we employ the frequency 
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interpretation of probability, it seems he has placed 
himself under no obligation at all. For, as we have seen, 
his assertion can never be refuted. We therefore reject 
this interpretation. Instead, we understand his asser
tion as an offer of certain odds on the outcome of the 
experiment [x, a]. We can still never disprove the theory; 
but we can at least render bankrupt the theorist. 

A given theory thus associates with each elementary 
experiment [x, a] a probability (of the outcome 1) 
which we call the expectation of this experiment and 
denote by (x, a). Our interpretation of probability lies 
between the objective and purely sUbjective views. It is 
not objective, since the probabilities are not asserted 
to be properties of nature; they belong to a physical 
theory. Nor is it purely subjective, since in general the 
theory will be accepted by many personsP 

We do not attempt to discuss the process by which 
an observer comes to accept a particular theory (in the 
above sense). However, there is one matter concerning 
the simplification of such a theory which should be 
discussed. We have defined a state as a collection of 
methods of preparation. One may ask how are these 
collections formed: In what way does the observer 
decide that two methods of preparation may be 
assigned to the same state? In reply, we now describe 
how the collections may be enlarged. Since there is no 
problem in starting with collections of one member, 
this answers the question. 

The enlargement is carried out by the identification 
of "equivalent" states. We define two states x and Y 
to be equivalent if, whenever x appears in an assertion 
of the form (I), the validityl6 of this assertion is un
affected by replacing x by Y and conversely. As far as 
all statements of the form (1) are concerned, equiv
alent states need not be distinguished. We may 
therefore identify all states in each equivalence class. 

A similar discussion applies in the case of tests. 
Two tests are called equivalent provided they are 
interchangeable in every assertion of the form (I). 
Equivalent tests may be identified without ambiguity, 
if desired. 

Of course, by definition, the equivalence of states 
and tests is relative to a given theory. An improvement 
in the theory may result in methods of preparation 
that had previously been considered equivalent be
coming inequivalent. As an example, two methods of 
preparation that produce electrons of distinct polariza
tion but that are otherwise similar are interpreted as 
realizing the same or different states according to 
whether or not there are available polarization
sensitive detectors which are recognized as such in the 
current theory. Similar remarks apply to methods of 
analysis. 

We next consider the requirement (b). According 
to it, any state mentioned in an assertion of the form 
(l) must denote a method of preparation that can 
actually be carried out. We call such states phYSical 
states, leaving the general term "state" free for other 
purposes. 

Let us determine the piace of physical states in 
conventional quantum mechanics. In this theory, 9 

there is associated with a physical system a Hilbert 
space He P Any state x is represented by a positive 
Hermitian operator (density matrix) Dx of trace 1, 
and any test a by a projection Au in such a way that 
always 

(x, a) = Tr (D"Aa). (2) 

For 0 < IX < 1, the weighted mean z = IXX + 
(I - lX)y of two states x and y is defined by D z = 
IXDx + (l - r:t.)Dy or, equivalently, by 

(z, a) = IX(X, a) + (1 - r:t.)(y, a), (3) 

for every test a, and is again a state. The states thus 
form a convex set. The extreme points of this set are 
the pure states, represented by projections of rank 1; 
all other states are called mixed. Any pure state x 
determines, up to a phase factor, a unit vector 11p.,> in 
He such that D., = l1px) (1pxl, the proi~ction on the 
subspace spanned by l1px> . 

Now suppose x and yare physical states. Then so is 
z = Hx + y), for the following constitutes a method 
of preparation for z: "Throw a die. If the number 
shown is odd, apply the method of preparation 
x; if it is even, apply y." In the same way, we can 
show that any weighted mean of two physical states is 
physical, so that the set S~ of all physical states is a 
convex set.lS 

Before proceeding, we deal with three criticisms 
that may be offered concerning the above description 
of the method of preparation z. First, if the elementary 
experiment [z, a] is performed, we might be inclined 
to defer our declaration of the probability of the 
outcome until the die had been thrown or, equiv
alently, to make it dependent on the result of the 
throw. But this we cannot do: We are required to 
offer odds on the outcome of the experiment [z, a] on 
the evidence of the documents z and a alone. It is 
clear that the only consistent thing to do, if we believe 
the die to be unbiased, is to take for (z, a) the value 
given by (3), with r:t. = i. 

A secopd criticism might be expressed in the follow
ing terms. "The method of preparation proposed for 
z coincides, on every occasion, either with a prepara
tion of x or with a preparation of y. It is therefore not 
an admissible method of preparation. Indeed, we can 
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give a more formal argument as follows. Suppose z 
is a state, and assume x ;I: y. Every execution of a 
method of preparation, x' say, for x could be imag
ined as preceded by a throw of the die with an odd 
number being obtained. But it is then, at the same 
time, a method of preparation for the state z. Con
sequently, x' is, in effect, a "refinement" of a method of 
preparation for z and thus is itself a method of prep
aration for z. But this means x = z. Similarly y = z. 
Thus x = y, a contradiction." 

In reply, we observe that no proper instructions 
have been given for the method of preparation x'. 
The only instructions which might have been offered 
would be: "Throw the die. If the number shown is odd, 
apply the method of preparation x; if it is even, con
sider the experiment void." However, because of the 
last phrase (which cannot simply be omitted) the 
execution of this method of preparation does not in 
general constitute an execution of z. Indeed, in the 
case of z, the experiment is never rendered void simply 
as a result of the number shown on the die. 

A third, relatively minor, objection to the definition 
of z is the observation that it involves the introduction 
of a foreign element-namely, the reference to a die or 
some similar chance event. However, this need not be 
so. The operation of throwing the die may itself be 
replaced by the execution of an arbitrary elementary 
experiment whose expectation is t; indeed, an ele
mentary experiment has exactly the properties-a 
well-defined expectation independent of other events
for which we employed the die. (In fact, with a slight 
elaboration we can use any elementary experiment 
whose expectation is neither 0 nor 1.) This concludes 
the discussion of possible objections to the definition 
of the weighted mean of two physical states. 

We now consider two examples which suggest that 
the conventional theories contain nonphysical states 
and, in particular, that all pure states are nonphysical. 
The first is the example of the states of polarization of 
a light photon-we are dealing here with a quantum 
theory with a 2-dimensional Hilbert space. Suppose 
the light is travelling horizontally and we wish to 
prepare a pure state in which the polarization is 
vertical. To do this, we would pass the light beam 
through a suitable device (Nicol prism, polarizing 
filter, etc.). However, the resultant light is never 
perfectly plane polarized, so that such a device never 
produces a pure state; it seems that a pure state is not 
physical. 

Note, by the way, that according to the present 
approach every photon in the beam is in the same 
(mixed) state, for they have all been prepared in the 
same way and the same predictions [i.e., assertions of 

the form (1)] would be made for any of them. A 
common attitude is to remark that the beam is indis
tinguishable from one obtained by superimposing 
(incoherently) beams, of suitable intensity and of 
vertical and horizontal polarization, and therefore to 
regard each photon as either vertically polarized or 
horizontally polarized. According to this attitude, 
different photons are in different "states." It is not 
clear what definition of "state" justifies this view, but 
it cannot be the one we have explained above. 

As our second example, we take the case of classical 
mechanics. Here, according to the conventional 
view,2.10.19 a test is represented by a Borel subset of 
phase space .0 and a state is a probability measure dfl 
on .0. A pure state is therefore a "b function" (a 
measure whose support is one point)-for instance, 
the state "at rest at the origin." It is clear that no 
actual procedure can realize such a state-there is 
always a slight uncertainty in position and momentum. 
(This, of course, has nothing to do with quantum 
theory-we are working with classical mechanics. It 
represents the necessary presence of "noise," e.g., 
thermal vibration, in the apparatus employed in the 
preparation of the state.) Thus, as in case of light 
polarization, every physical state is mixed. However, 
not every mixed state is physical-consider, for in
stance, a weighted mean of two pure states. Indeed, it 
is not unreasonable to suppose that every physical 
state is of the form dv = I().) dfl, where I().) is a 
smooth (i.e., infinitely differentiable) function on the 
phase space and dfl denotes Lebesgue measure on the 
manifold .0. 

We have seen that the physically significant asser
tions of a quantum theory must refer to physical 
states. Moreover, it is strongly suggested by the above 
examples that every physical state is mixed. It follows 
that mixed states must have a place in the theory. Here 
the situation is satisfactory: Mixed states have, in fact, 
a well-defined representation in conventional quantum 
mechanics. The situation is not so satisfactory in the 
case of tests, as we now see. 

To illustrate this, we consider the same two ex
amples as before. As a typical test in the case of light 
polarization consider that which asks the question: Is 
the photon polarized vertically? To realize this test, we 
require an arrangement which always responds to a 
photon if the plane of polarization is vertical and 
never responds if the plane of polarization is hori
zontal. Such an arrangement may be approximated by 
a device consisting of a detector placed behind a 
suitable filter. This device responds with a high 
probability 1 - € to a vertically polarized photon and 
with a low probability c5 to a horizontally polarized 
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FIG. I. Graph giving the probability of response as a function of the 
coordinate of the particle. 

photon, where € and r5 are some numbers which may 
be small but which are not zero. 

Certainly, on each occasion, the device either does 
or does not respond, so that it must realize some test 
a. If we compute the probability of response to a 
photon in a (not necessarily pure) state of polarization 
x, we obtain: 

Probability of response = (x, a) 

= (1 - €) Tr (D.,Ev) 

+ r5 Tr (D.,Eh ), 

where D., is the density matrix representing the state 
and Ev and Eh are the projection~ corresponding to 
tests of horizontal and vertical polarization respec
tively, Le., Ev = l"Pv) ("Pvl, Eh = l"Ph) ("Phi, where l"Pv) 
and l"Ph) are vectors representing pure states of vertical 
and horizontal polarization, respectively. This gives 

(x, a) = Tr (D.,Aa), (4) 

where Aa = (1 - €)Ev + r5Eh • Thus, Eq. (2) still 
holds for the test a, provided we represent this test not 
by a projection but by the Hermitian operator Aa. 

By considering other devices of the above type, we 
arrive at the conclusion that, for any physical test a, 
(x, a) is always given by Eq. (2) for some Hermitian 
operator Aa whose eigenvalues may lie anywhere in 
the interval CO, 1). We describe a test a as a mixed test 
whenever Aa is not a projection, as a pure test if Aa is 
a projection. Only pure tests are disc~ssed in conven
tional quantum mechanics. On the other hand, our 
example suggests that physical tests are normally 
mixed. 

To throw more light on the situation, let us discuss 
our second example. As we have already observed, in 
conventional classical mechanics any test a is repre
sented by a Borel set Ea in phase space n, and the 
probability of response when this test is applied to a 
system in a state x, represented by a measure dvo; on 
the phase space, is 

(x, a) = r dv., = [ Ji'A) dv." (5) 
JEa Jo 

where fi'A) is the characteristic function of Ea , defined 
by lafA) = 1 for 'A E Ea and iaC'A) = 0 for 'A ¢ Ea. For 
example, consider a particle which moves on a line, 
and suppose that a is the test which answers the ques
tion: Does the coordinate q lie between 1 and 2? Then 
fa can be regarded as a function of the coordinate q 
alone, and its graph (Fig. 1) gives the probability of 
response as a function ofthe coordinate of the particle. 

To realize a, we need a kind of "spectrometer" that 
always responds when I < q < 2 and never responds 
otherwise. It is clear that no actual device behaves in 
this way. Rather (Fig. 2), a real spectrometer is 
characterized by a probability of response which is at 
least a continuous function of q; for near the ends of 
its range the signal becomes dominated by noise, so 
that the probability of response drops continuously 
from 1 to O. Indeed, it is reasonable to expect that this 
response function is asmooth function of q. For instance, 
in a simple model it is obtained by convolution of an 
ideal response function with a Gaussian probability 
distribution of errors. 

Such a device certainly realize~ a test, since on every 
occasion it either does or does not respond. What will 
be its probability of response to a (not necessarily 
pure) state x represented by a measure dVflj? The 
answer is surely that Ep. (5) still applies, where f., is, 
however, no longer the characteristic function of a 
Borel set but rather the continuous response function 
of the device. 

We call a test a in classical mechanics a mixed test if 
(x, a) is given by (5) with a functionfa which is not 
idempotent, in contrast with the pure tests of conven
tional classical mechanics for whichia is idempotent. 
The above discussion strongly suggests that in classical 
mechanics, as in quantum mechanics, physical states 
are mixed. 

The same argument as was used above in the case of 
states now applies: The physically significant asser
tions of classical or quantum mechanics must refer to 
physical tests, for no other tests can actually be real
ized. Thus, the concept of a mixed test must appear in 
the theory. It is a serious fault of conventional 

f (q) 
a 

q 
FIG. 2. A real spectrometer is characterized by a probability of re

sponse which is at least a continuous function of q. 
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quantum mechanics (and, for that matter, of classical 
mechanics) that this concept is not present. 

The concept of a mixed test, which we have intro
duced, should not, of course, be confused with the 
conventional concept of an observable. Although both 
are represented in quantum mechanics by Hermitian 
operators (and in classical mechanics by functions on 
the phase space), the interpretation is quite different. 
Measurement of a test always gives either 0 or I as the 
outcome, whereas measurement of an observable 
gives, according to the conventional interpretation, a 
number in the spectrum of the corresponding operator. 
On the other hand, for a mixed test a, as for a con
ventional observable, the expectation value in the 
state x is given by Tr (D",Aa) [or J faC).) dv", in classical 
mechanics]. 

In the same way as for states, we can form the 
weighted mean of two tests. This time, we describe the 
construction of an arbitrary weighted mean rather 
than the special case oc = t. 

Let a and b be physical tests and let oc be a number 
in the interval (0, 1). We define the weighted mean 
c = oca + (1 - oc)b of a and b as a physical test by 
giving the following method of analysis for it. To apply 
the test c, first choose a number p at random in the 
interval (0, 1). (This can be done, for instance, by 
determining, by throws of a coin, the successive digits 
in the binary expansion of p.) If p < oc, apply the test 
a; if p > oc, apply b. It follows from the construction 
that, for any state x, 

(x, c) = oc(x, a) + (I - oc)(x, b). (6) 

This equation justifies the notation c = oca + (l - oc)b. 
The possibility of a direct construction of weighted 

means gives rise to another advantage of the concept 
of a mixed test. As we have seen, mixed tests are repre
sented in the same way as observables. Now, in an 
axiomatic treatment of quantum mechanics, if a, b, 
and care observables, it is customary to define c = 

a + b to mean (x, c) = (x, a) + (x, b) for every 
state x, but we have to postulate that, if a and bare 
observables, there is an observable c such that c = 
a + b. However, if a and b are physical tests, we can 
construct not quite their sum but their mean c = 
Ha + b); no corresponding postulate is required. 

The notion of a weighted mean provides a justi
fication for the terms "mixed test" and "pure test." 
First consider classical mechanics. To any physical 
test a there corresponds a unique20 function fa and, 
since the expression (x, a) in Eq. (4) is a probability, 
the range of this function must certainly lie in the 
closed interval [0, 1]. Clearly, any such function 
determines (up to equivalence) not more than one 

physical test. Let us use the general term "test" to 
describe the idealized procedure represented by any 
such function (not necessarily even a Borel function), 
so that a physical test is a test which can actually be 
realized in practice. It is easy to show that the tests 
form a convex set of functions (of which the physical 
tests form a convex subset) and the extreme points are 
exactly the pure tests. 

Similarly in quantum mechanics: on the basis of Eq. 
(3), we can set up a 1-to-1 correspondence between the 
physical tests and a certain class of Hermitian oper
ators whose spectrum lies in the closed interval [0, 1].20 

Let us designate as a test the idealized procedure repre
sented by any Hermitian operator that has this property. 
The tests then form a convex set of Hermitian oper
ators, of which the extreme points are the pure tests. 
Again, the physical tests form a convex subset.22 

For every system, there are two special tests 0 and 1 
defined by the equations (x, 0) = ° and (x, 1) = 1 
for every state x. They correspond to the always
false and the always-true propositions, respectively. 
These tests should always be regarded as physical tests: 
0, for instance, is realized by the trivial method of 
analysis: "no action is required; the outcome is ° in 
any case." Apart from these special cases, a physical 
analysis of each particular system is required to deter
mine the class of physical tests. As we have seen, in the 
case of classical mechanics a reasonable necessary 
condition is that, for any physical test a,fa should be 
a smooth function on the infinitely differentiable 
manifold O. If 0 is compact, it is reasonable to 
suppose that this condition is also sufficient. In the 
noncompact case, however, we must usually also 
impose some condition on the "behavior at infinity" 
ofJa. In all cases, it seems, a sufficient condition is that 
fa should tend to a constant, but this is by no means 
necessary. On the other hand, to impose no condition 
at infinity is too weak for any realistic interpretation 
of "physical." In the case of light polarization, our 
discussion suggests that the physical tests are those 
represented by all Hermitian operators in the interior 
of the region {A: 0 ::;:; A ::;:; I}, together with 0 and 
1.23 It is reasonable to suppose that the same holds 
for any quantum mechanical system provided the 
Hilbert space He is finite dimensional. When He is 
infinite dimensional, the situation is much less simple, 
each case requiring its own analysis. We discuss this 
further in Sec. 6 and a few examples are treated in 
detail in the Appendix. 

4. THE CONCEPT OF PHASE SPACE 

One of our objects in the rest of this paper is the 
determination of the quantum analog of the concept 



                                                                                                                                    

2148 ROBIN GILES 

of phase space. To pave the way for this discussion, 
we treat now the case of classical mechanics. 

Here we have a phase space 0, which we assume to 
be an infinitely differentiable manifold. For simplicity, 
we shall at present assume 0 to be compact. We 
assume not only (as in Sec. 3) that every physical 
test, other than 0 and 1, is represented uniquely by a 
smooth (Le., infinitely differentiable) function on 0 to 
(0, 1), but also that every such function represents a 
physical test. We denote by T: the class of all physical 
tests. lS As explained in Sec. 3, we use the plain term 
"test" to denote any function on 0 to [0, I]; for 
simplicity, we do not distinguish between a test and 
the function which represents it. Also, following Sec. 
3, we assume that every physical state is represented by 
a probability measure of the form f(A) d{t, where f(A) 
is a smooth function on 0 and d{t denotes Lebesgue 
measure, and that every such measure represents a 
physical state. We denote by S~ the set of all physical 
states.21 

Mathematically, there are three levels of detail at 
which we can view the phase space 0. At the finest 
level, we regard 0 as it really is-as an infinitely 
differentiable manifold. At the second level, we choose 
to ignore the manifold structure on 0. It then appears 
as a locally Euclidean topological space. Finally, at 
Level 3, we ignore the topology as well, and 0 then 
appears simply as a set. 

From a physical point of view, each of these view
points may be regarded as arising from a certain 
attitude towards the tests. Suppose, for the present, 
that we are given the set 0. Then the finest level 
corresponds to the possibility of distinguishing among 
the tests the subset T; consisting of those which can 
be exactly realized in practice. For not only does the 
manifold structure on 0 determine this class, but the 
set of functions T; uniquely determines, and indeed 
practically is, the manifold structure. 

The second level is reached as follows. First ob
serve that any continuous function on 0 to [0, I], and 
only such a function, can be approximated uniformly 
on 0 by a physical test. Being so nearly realizable, 
these functions might be considered to be practically 
physical tests. Let us call them uniform tests. Of 
course, the set yo of all uniform tests may arise from 
many different sets T;.24 Now we might take the view 
that, since every uniform test can be "practically" 
realized in the laboratory, there is no point in dis
tinguishing the particular subset T; from which yo 
arose. If we decide to ignore this subset, we-in this 
very act-renounce the possibility of recovering the 
manifold structure on .0, for yo does not determine 
this structure. However, TO does uniquely determine 

the topology25-27; and, of course, the topology on 0 
determines YO. So we have passed to Level 2. 

The passage from Level 2 to Level 3 is accomplished 
in a similar manner. Any function on .0 to [0, I] can 
be approximated in a rather crude way by uniform 
tests: namely, given any finite number of points in 
0, we can find a uniform test which differs arbitrarily 
little from the given function at all these points. So we 
can, with a stretch of the imagination, pretend that 
any such function represents a sort of test. Call these 
weak tests.2S The set T~ of all weak tests is, of course, 
independent of the topology on 0. So, if we choose to 
take the-admittedly crude-view that, since all weak 
tests can be approximated by uniform tests, all are 
equally good, and therefore decide to ignore the 
distinguished subset YO, we lose in so doing the possi
bility of recovering, from the structure of the tests, 
the topology of 0. In this way, we have passed to 
Level 3: 0 appears now as merely a set. Observe that, 
in passing from Level 2 to Level 3, one loses one very 
important physical property of the system-namely, 
the number of degrees of freedom. This property 
manifests itself through the dimension number of 
phase space, which is a topological property. 

There are usually very few pure uniform tests: if 0 
is connected, the only ones are 0 and 1. On the other 
hand, there are plenty of pure weak tests. Indeed, they 
are in I-to-l correspondence with the subsets of 0 
and so form a complete atomic Boolean algebra,29 the 
atoms being the I-point sets. The abundance of pure 
tests, combined with the mathematical simplicity and 
physical convenience of this concept, is the main 
justification for the introduction of weak tests. 

There are actually two other levels of detail slightly 
finer than Level 3. The first places the emphasis on 
measurable functions. In 1936, Birkhoff and von 
Neumannll observed that any set of (Lebesgue) meas
ure zero corresponded to a pure test a for which 
(x, a) = 0 for every physical state x. Accordingly, they 
proposed to ignore such sets and to represent (pure) 
tests by measurable sets modulo sets of measure zero. 
In terms of mixed tests, this corresp:mds to intro
ducing measurable tests as represented by measurable 
functions on .0 to [0, 1] modulo functions of measure 
zero. There are plenty of pure measurable tests; they 
form a Boolean algebra which is complete but not 
atomic.30 

Starting with the uniform tests, we may reach the 
measurable tests by following the procedure of Daniell 
integration theory.31 (This requires the use of one 
physical state-any physical state defines a measure 
which is absolutely continuous with respect to 
Lebesgue measure.) If we then ignore the subclass 
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(consisting of the uniform tests) from which we 
started, we pass to Level3a. Here, n takes the form 
of a measurable space. 

More recently, it has become customary2.10,19 to 
assign a basic role to the Borel sets. These arise in our 
treatment in the following way. Let us define a Borel 
test to be a Borel function from n to (0, 1]. A Borel 
test can be approximated by physical tests in a slightly 
stronger way than a weak test. Also, if a is a Borel test, 
(x, a) exists for every physical state x (and even, as we 
shall see later, for every "weak state" x), whereas this 
is by no means the case for an arbitrary weak test a. 
There are plenty of pure Borel tests-corresponding to 
the Borel subsets of n; they form a Boolean algebra 
which, although atomic, is not complete. 

If, starting at Level 2, we construct the class T'B of 
all Borel tests and then ignore the subset yo of T'B 
consisting of the uniform tests, we lose sight of the 
topology of n but are still able to distinguish its Borel 
structure; i.e" n appears as a Borel space. We call this 
level of detail Level 3b. 

With these thoughts regarding the structure of 
classical mechanics in mind, let us now examine 
quantum mechanics, We have pointed out one serious 
fault in conventional quantum mechanics: It fails 
entirely to disc,uss mixed tests~all the tests mentioned 
in that theory are pure. A second major blemish is this: 
it fails to represent, in the underlying mathematical 
structure, the number of degrees of freedom of the 
system. Thus, whether we are discussing a harmonic 
oscillator, a rigid rotator, a particle moving on a 
closed curve, or on a line, or in two or three dimen
sions, or even a system of many particles, the Hilbert 
space He is always the same, and the observables
according to the conventional theory-form the set 
of all bounded Hermitian operators on He . 

Regarding these two faults in the light of the above 
discussion of classical mechanics, it is clear what has 
happened: the system is being viewed at Level 3. This 
is shown both by the fact that the treatment can be 
given in terms of pure tests-only at Level 3 are there 
(in general) any nontrivial pure tests-and by the fact 
that no trace remains, in the general structure, of the 
number of degrees of freedom. This is exactly what 
would happen in classical mechanics if we ignored the 
topology of phase space and proceeded to Level 3. 

A clear program now lies before us. To recover the 
lost detail and reveal the structure of a quantum
mechanical system at Levels 1 and 2, we must first 
make a careful physical analysis of the nature of the 
system, with the aim of recognizing the physical tests. 
If the conventional theory is correct (as far as it goes), 
then every mixed test should be represented by a 

Hermitian operator with spectrum lying in [0, I]. 
Hopefully, our physical analySis will a110w us to 
decide which of these operators represent physical 
tests. The class T; of all physical tests is thus identified 
with a convex set of such operators; this set is the 
quantum mechanical analog of the set of smooth 
functions that corresponds to T~ in the classical case. 

We now have two possibilities. On the one hand, we 
may investigate the structure of T;; this should lead us 
to the quantum analog of a manifold. On the other 
hand, recognizing that a manifold is a much more 
sophisticated concept than its underlying topological 
space, we might try, in the first instance, to pass to 
Level 2 by identifying the class yo of all uniform tests. 
This leaves us with the presumably easier task of 
investigating the structure of yo in the hope of dis
covering the quantum analog of the concept of a topo
logical space. 

This same program also arises if we attempt to give 
a formulation of mechanics which is "ideal" in the 
sense of Sec. 2. To this end, we must first select suit
able primitive concepts, which should be chosen so 
that the physical concepts to which they refer are as 
direct as possible. Now, although the (pure) states and 
tests of conventional quantum mechanics purport to 
represent physical concepts, we have seen above that 
they are really only limiting cases of physical states 
and tests. The latter concepts are much more direct, 
and we therefore choose them as primitive concepts 
for the new formulation. For the kinematic part of 
mechanics, these concepts, together with the expecta
tions of the form (x, a), suffice. 

The axiomatic theory which arises in this way is 
sketched iQ Secs. 5-8. It can be interpreted as repre
senting the progress of a primitive observer for me
chanics, who is able only to recognize physical states 
and tests and carry' out elementary experiments. In 
this theory, all other concepts are defined in terms of 
physical states and tests and expectations. These 
definitions may be understood as describing the pro
cess of concept formation that goes on in the mind 
of our primitive observer. 

So far, we have not distinguished classical and 
quantum mechanics, and indeed it is not clear, a priori, 
how our primitive observer is to tell whether he is 
dealing with a classical or a quantum system. The 
theory proceeds for some time without distinguishing 
the two cases. Even after the separation has occurred, 
it is natUral, as far as possible, to use the same proce
dures in developing the two branches; in this way, 
quantum analogs for classical concepts appear in a 
natural way. 

This approach leads also to a new view of classical 
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mechanics. Our primitive observer's first physical 
example of a manifold is phase space, and to him the 
primitive concept is not the points but the algebra of 
smooth functions. This ties in with modern differ
ential geometry, where this algebra plays a fundamen
tal role. Similarly, whereas to us the simplest concept 
connected with a topological space is a point and the 
concept of a continuous function is relatively sophisti
cated, to our primitive observer the order is reversed, 
for it is the continuous function which (for him) is 
closer to having a concrete physical significance. 

In their conventional formulations, the mathemat
ical structures of classical and quantum mechanics 
are very different. Hilbert space, for example, which is 
sometimes considered to be the quantum analog of 
phase space, is a very different structure from phase 
space; it is simpler in being always a linear space, but 
more complicated in being infinite dimensional. But, 
from the viewpoint of our primitive observer, the 
difference between classical mechanics and quantum 
mechanics is relatively small. For instance, in both 
cases it turns out that the uniform tests ra filI the inter
val {a: 0 S a S I} in the real part of a C*-algebra A. 
In the classical case, A is commutative; in the quantum 
case, it is not. 

The "inverted" view of various mathematical struc
tures, which arises in this way, is valuable even in a 
purely mathematical respect in suggesting new de
velopments and generalizations. Perhaps it is we, and 
not our primitive observer, who are looking at things 
upside do'Wn! 

In the rest of this paper, we describe in more detail 
the mathematical structure of this formulation of 
quantum mechanics. Naturally, the axioms, and to 
some extent the definitions, are motivated by concrete 
examples of physical systems. To avoid interrupting 
the continuity of the argument, these examples are 
discussed separately in the Appendix, and it may 
be desirable that this should be read in parallel with 
Sees. 5-8. 

5. C*-SYSTEMS 

In the last section, we introduced the concept of a 
primitive observer for mechanics. Let us imagine we 
are watching such an observer as he carries out 
experiments and develops a theory of the world 
around him. We assume he has available a variety of 
systems.32 Each system can be subjected to anyone of 
a set S~ of methods of preparation (states) and, when 
so prepared, can be tested by any of a set T~ of 
methods of analysis (tests). By induction based on 
experiment, our observer arrives at an expectation 
(x, a) that a positive outcome will be obtained when 
the method of analysis a is applied to a system pre-

pared by the method of preparation x. Being only 
interested in the values of the expectations, he 
decides not to distinguish two states x and y, which 
have the same expectation for all tests, and similarly 
for tests. He tabulates the values of (x, a) as a function 
of x and a. His object is to discover any structure which 
may underlie these observations. Such a structure 
would (a) expedite the making of predictions and (b) 
serve as a basis for the assignment of expectations to 
elementary experiments which have never been carried 
out. 

Of course, there are certain properties whose validity 
is evident without any reference to his experimental 
results. For instance, he can state with certainty: 

Axiom 1: S~ and T~ are two sets whose elements 
are calIed physical states and phySical tests, respec
tively. T~ contains distinguished elements 0 and 1. To 
every physical state x and physical test a, there 
corresponds a real number (x, a), such that 

(i) {(x, a) = (y, a) for alI a implies x = y, 

(x, a) = (x, b) for all x implies a = b; 
and 

(ii) {O S (x, a) S 1, for aU x and a; ° = (x, 0) and 1 = (x, 1), for all x. 

Next, our observer recognizes that he has always 
the possibility of forming weighted means of states 
and tests, as described in Sec. 3. In virtue of the 
"separation property" (i), each state may be regarded 
as a function on T~ and each test as a function on 
S~. From the experimental meaning of the concept of 
weighted mean, our observer concludes that the 
linearity properties [Eqs. (3) and (6) of Sec. 3] must 
hold. So he can state with confidence: 

Axiom 2: Regarded as a set of functions on T;, S~ 
is a convex set. Similarly, regarded as a set of functions 
on S~, T; is a convex set. 

Next, if a is any test, our primitive observer can 
always obtain another test a' by exchanging the labels 
o and 1 on the apparatus which realizes a (or rather, on 
the document which describes the method of analysis 
a). Since a' is the same method of analysis, with merely 
the reverse interpretation of the outcome, he knows 
that (x, 0') + (x, a) = 1 for every state x. With the 
function interpretation of tests, this gives: 

Axiom 3: If a is a physical test, so is 1 - a. 

All these assertions follow from the meanings of the 
terms employed, regardless of the experimental values 
of the expectations. 
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The next stage in his work is the construction of the 
uniform tests. In Sec. 4, we introduced these, in the 
case of classical mechanics, as those tests which could 
be approximated, uniformly on phase space n, by 
physical tests. Here, even if he is confronted with a 
classical system, our primitive observer has no access 
to n, so this definition is unavailable. However, in the 
example of classical mechanics described in Sec. 4, an 
equivalent condition is to demand uniform approxi
mation on the physical states. Let us suppose, then, 
that our primitive observer adopts the following 
definition: 

Definition 1: In the linear space of all real-valued 
bounded functions on S~, let II II denote the sup norm 
and let ~ denote the pointwise ordering: 

lIall = sup {I(x, a)l: x E S~}, 

a ~ 0 means (x, a) ~ 0, for all x in S:. 
Let yo denote the norm closure of T; . The elements of 
TO are called uniform tests. Let Tp and T be the linear 
spaces spanned by T; and YO, respectively. 

It follows at once from Definition 1 that T is a 
partially ordered linear space with order unit 1, 
containing a distinguished convex subset YO. Given 
a E T, a necessary condition that a E yo is clearly 
o ~ a ~ 1. Although it does not follow from Axioms 
1-3, it seems to be true in practical cases that this 
condition is also sufficient: 

yo = {a: 0 ~ a ~ I}. 

This property would be recognized by our primitive 
observer as a law of nature. However, there is a much 
more profound observation which is also accessible to 
him: T, as a partially ordered linear space, is isomorphic 
to the real part of a C*-algebra. To appreciate the 
evidence for this, consider first the case, introduced at 
the beginning of Sec. 4, of a classical-mechanical 
system with a compact phase space Q. The space T, 
introduced in Definition 1 as a partially ordered 
linear space of real-valued functions on S; , appears in 
this case as the partially ordered linear space of all 
continuous functions on n. Moreover, this representa
tion of T preserves the order and the norm. Now, this 
latter space is, via the identity map, isomorphic to the 
real part Re [C(Q)] of the C*-algebra33 C(Q) of all 
complex-valued functions on .n (with pointwise 
multiplication on n). Conversely, by the well-known 
representation theorem for commutative C*-algebras, 
if T is isomorphic to the real part of any commutative 
C*-algebra, then it may be represented as the linear 
space of all real-valued continuous functions on a 
compact Hausdorff space.26 

If n is not compact, the nature of T depends on the 
conditions at infinity satisfied by the physical tests (see 
the end of Sec. 3). A study of a limited number of 

. physical examples suggests that always T= Re [C(X)], 
where X is some compactification of n. If there are no 
conditions at infinity, X is the Stone-Cech compacti
fication27 of n; if-the opposite extreme-every 
physical test tends to a constant at infinity, then X is 
the I-point compactification of Q; in general, inter
mediate compactifications arise. 

Now let us consider the quantum-mechanical case. 
The simplest example is the case of light polarization 
discussed in Sec. 3. In this case, Tp is finite dimen
sional and so coincides with its completion T. Thus, 
T = Re [L(HJl, where He is the Hilbert space (in this 
case, 2-dimensional) associated with this system in 
the conventional theory; and, of course, L(Hc) is 
certainly a norm-closed *-algebra of operators-i.e., 
a C*-algebra. The case of quantum mechanics over an 
n-dimensional Hilbert space presents no new features. 
In the case of infinite dimension, however, T turns 
out in examples (see the Appendix) to be T = Re (A) 
for some C*-algebra A which is now a proper sub
algebra of L(Hc). (Indeed, in these examples, even 
Tp is the real part of a *-algebra of operators Ap. Ap is 
not norm closed; it may be regarded as the quantum 
analog of the algebra of smooth functions on phase 
space that appears in the case of classical mechanics. 
This algebra should be important in connection with 
the quantum generalization of a manifold.) 

Let us make the following definition: 

Definition 2: A C*-system is a structure satisfying 
Axioms 1-3, such that 

(i) yo = {a: a E T, 0:::;; a :::;; I}, and 
(ii) T is isomorphic, as a partially ordered linear 

space, to the real part Re (A) of a C*-algebra A with 
1 corresponding to the unit of A. 

With this definition, our primitive observer can 
express the preceding observations by announcing 
the law of nature: 

Every system is a C*-system. 

He will have less confidence in this law than in the 
preceding axioms, since it is based not only on defini
tions but on experience. However, its apparent validity 
certainly motivates a thorough investigation of C*
systems. This program occupies us throughout the 
next three sections. 

6. THE CONSTRUCTION OF PURE STATES 

In this section and the next two, we continue the 
development of classical and quantum mechanics 
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from the point of view of a primitive observer. It is 
assumed, unless otherwise stated, that the system 
under study is a C*-system. 

The concept of a pure state plays an important role 
in both classical and quantum mechanics. This is 
partly because the specification of a pure state is 
simpler than that of a mixed state and any mixed 
state can be obtained as a superposition of pure 
states, and partly because of the behavior of pure 
states in connection with the operation of uniting sys
tems: If a composite system is formed by the union 
of two subsystems, then a unique (pure) state of 
the whole is determined by specifying pure states 
for the two parts-the situation for mixed states is 
more complicated. Now, physical states are normally 
mixed, so our primitive observer has no immediate 
access to pure states; for him, suoh states must be 
constructed. 

In the case of classical mechanics on a compact 
phase space Q (see Sec. 4), the physical states are 
represented by certain smooth probability measures 
on Q and the pure states should surely be represented 
by the points of Q or, equivalently, by the point 
measures or b functions on Q. Any pure state or 
physical state thus determines a regular probability 
measure on Q or, equivalently, a normalized positive 
linear functional on T. This suggests the following 
definition: 

Definition 3: A weak state x is a linear functional 
a -t--t (x, a) on T to the reals such that 

(i) x is positive: i.e., a ~ 0 implies (x, a) ~ 0; 
(ii) x is normalized: i.e., (x, 1) = 1. 

It follows easily from the definition that the weak 
states form, in the dual Sw of the Banach space T, a 
convex set S~ which is compact in the weak topology. 
The Krein-Milman theorem then guarantees that there 
are plenty of pure (weak) states: S~ is the weakly 
closed convex hull of the set S~ of all pure states. 

The term "weak state" is justified by the following 
fact. Any weak state x (and, in particular, any pure 
state) may be "weakly approximated" by physical 
states: i.e., given any finite set of (uniform) tests 
al , ••• , an and any E > 0, there is a physical state y 
with I(x, ai ) - (y, a;)1 < E, for 1 sis n.4 This fol
lows from Definition 2 with the aid of the Hahn
Banach theorem. 

These immediate conclusions from Definition 3 are 
valid for any system satisfying Axioms 1-3. Hence
forth, however, we consider only C*-systems. 

We have introduced the term "weak state" so that 
"state" is available for other purposes, for instance in 

physical 'arguments. However, in the case of a C*
system, the weak states correspond to the "states" of 
the C*-algebra A, in the sense used by mathemati
cians,34 i.e., to the normalized positive linear func
tionals on A. For the present, then, we refer to weak 
states simply as states. 

Given any representation of a C*-algebra A in a 
Hilbert space, any unit vector 1p determines a state 
x", of A by (x"" a) = (1p, a1p), and this vector state x 
is pure if and only if the representation is irreducible. 
Moreover, every pure state of A arises in this way and 
two irreducible representations give rise to the same 
pure states if and only if they are equivalent. Thus the 
reduced atomic representation35- 37 1T of the C*-algebra 
A of a C*-system-which is defined as the direct sum 
of a maximal set of inequivalent irreducible repre
sentations of A-is characterized by the prope~y that 
every pure state occurs in it exactly once as a vector 
state. The reduced atomic representation is always 
faithful; so we can, and sometimes shall, identify A 
with the concrete C*-algebra 1T(A). 

The Hilbert space H in which 1T(A) acts-which we 
call the large Hilbert space-is a direct sum of Hilbert 
spaces, one for each inequivalent irreducible repre
sentation. Borrowing the terminology of superselec
tion rules, we call these coherent subspaces of H. Every 
pure state is associated with an allowed ray, i.e., a ray 
that lies on one coherent subspace. Moreover, every 
element of A, and in particular every uniform test, is 
represented by an allowed linear operator, i.e., one 
that commutes with the projection on every coherent 
subspace. 

Let us define a state to be discrete if it is a countable 
linear combination of pure states. For any discrete 
state x, we can give an expression for (x, a) analogous 
to Eq. (4). First, for each pure state x, let rex) denote 
the projection on the ray in H that represents x. We 
clearly have 

(x, a) = Tr [r(x)1T(a)]. (7) 

Now, the mapping r extends by linearity and con
tinuity to an order- and norm-preserving isomorphism, 
which we still denote by T, of the norm-closed sub
space Swt of Sw, spanned by the pure states, onto the 
linear space Awt of all allowed operators of trace 
class38 with the trace norm. Moreover, (7) continues 
to hold for every x in Swt. Consequently, it holds for 
every discrete state x, since the discrete states are ex
actly the states in Swt. 

For other states, this equation does not apply. The 
reason for this is easily seen by considering the 
case of classical mechanics over a compact phase 
space Q. Here, 1T(a) and rex) may be identified with 
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functions on n and the operator, trace, becomes sum
mation (not integration) over all points in n; 1T(a) 
is, of course, a continuous function. If x is a discrete 
state, 7(X) vanishes, except on a countable set of 
points in n. In fact, any state is represented by a 
measure on n; in the case of a discrete state, the 
measure is discrete, i.e., it is a countable linear com
bination of ~ functions, and the function r(x) gives 
the coefficients in this linear combination. 

It is clear that Eq. (7) can only be expected to apply 
to discrete states. For general states, it should be 
replaced by some generalization of Eq. (5). 

Not all the pure states of a C*-system appear in the 
conventional theory. We see this in the discussion of 
particular quantum-mechanical systems in the Appen
dix. There we start, for practical reasons, \\<ith the 
conventional theory, in which the observables are the 
Hermitian operators on the conventional Hilbert space 
He . By physical considerations we distinguish, among 
these operators, a subset that corresponds to the 
physical tests, and this leads us to the C*-algebra A. 
A is thus obtained as a concrete C*-algebra of linear 
operators on He. We call this the conventional repre
sentation of A. Of course, it is faithful. Usually it is 
also irreducible; let us assume this to be the case. The 
conventional representation may then be taken to be a 
subrepresentation of the reduced atomic representa
tion, so that He is one of the coherent subspaces in the 
large Hilbert space H. Now, a conventional pure 
state-i.e., a pure state in the sense of conventional 
quantum mechanics-is represented by a ray in He 
and is therefore a weak pure state. However, except in 
the trivial case when He is finite dimensional, there are 
other coherent subspaces als039 and thus pure states 
other than conventional pure states. Indeed, given any 
uniform test a and any number oc in the spectrum of 
a, there is34 a pure state x such that (x, a) = 0:; unless 
0: is in the discrete spectrum, x is not a conventional 
pure state. We meet some concrete examples of such 
nonconventional pure states in the Appendix. 

These nonconventional pure states are, of course, 
orthogonal (as rays in H) to every conventional pure 
state. One may wonder how it is that conventional 
quantum mechanics manages very well without such 
states. This is because any pure state can be weakly 
approximated (in the sense explained above) by con
ventional pure states; this follows from the fact that the 
conventional representation is faithful. 40 

I t is important to remember that A is obtained above 
as a concrete C*-algebra only because we have taken a 
short cut by appealing to the conventional theory. 
Faced with the task of determining A directly from 
experiment, we should have to adopt the same pro-

cedure as a primitive observer: to determine the values 
of (x, a) for many elementary experiments [x, a] until 
the structure of S; and T: becomes clear and then to 
construct T and seek an A such that T = Re (A).41 
Thus, in principle, A is always obtained as an abstract 
C*-algebra: the conventional representation has, a 
priori, no particular physical significance. In cases 
w here this representation is the only faithful irreducible 
representation, it is, of course, determined by A, and 
this seems to happen with simple quantum-mechanical 
systems. But in more complicated cases, there could be 
several faithful irreducible representations,42 and in 
classical mechanics there are none. 

Nonconventional pure states arise also in the case 
of classical mechanics whenever the phase space n of 
the system is not compact. (This includes most prac
tical cases.) In this case (see Sec. 5), A = C(X), where 
X is some compactification of n. The pure states now 
correspond I-to-l to the points of X. There is thus 
always at least one nonconventional pure state. As in 
the case of quantum mechanics, any pure state can be 
weakly approximated by conventional pure states. 

7. THE CONSTRUCTION OF PURE TESTS 

It would be an understatement to say that pure tests 
play an important role in the foundations of quantum 
mechanics. As we have seen, they are the only tests 
considered, and through their interpretation as prop
ositions they form the basis for the most, popular 
approach to the subject.2.1o.11 

Nevertheless, the situation is the same as for states: 
Both in classical and quantum mechanics, pure tests 
have no actual realization in practical terms; to give 
them a physical meaning, they must be constructed 
out of physical states and tests. The construction 
(which may, as before, be regarded as a description of 
the process of concept formation in the mind of a 
primitive observer) is slightly more complicated than 
the corresponding procedure for states. We first 
describe this construction and then justify it. 

Let us identify the C*-algebra A of a C*-system 
with its reduced atomic representation 1T(A) , which 
acts on the Hilbert space H (see Sec. 6). Thus, each 
uniform test a is identified with the Hermitian oper
ator 1T(a) which represents it. We also identify each 
discrete state x with the corresponding trace-class 
operator rex). These identifications are assumed until 
the end of Sec. 8. 

It can be shown that the weak operator closure of 
A in L(H) coincides36 with the set Aw of all allowed 
operators. If H is expressed as a direct sum H = 
EB {Hi} of coherent subspaces, then Aw = EEl {L(Hi)}. 
The Hermitian operators in Aw form a partially 
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ordered linear space Tw; we set T~ = {a: a E Tw, 
o S a S I} and call the elements of T~ weak tests. 

The extreme points of the convex set T~ are the 
pure (weak) tests. They coincide with the allowed 
projections in L(U), i.e., with the projections in Aw. 
We denote the set of all pure tests by T~. Since Aw is 
a von Neumann algebra, T~ is a complete orthocom
plemented weakly modular lattice.29 Obviously, it is 
also atomic. 

To appreciate the significance of this construction, 
consider first the case of classical mechanics. In the 
general case, when the phase space Q is not necessarily 
compact, A = C(X) for a certain compactification 
X of.Q (see Sec. 5), and Aw is the algebra of all bounded 
complex-valued functions on X. The pure tests are 
thus in 1-to-l correspondence with the subsets of X. 
Since Q c X and the conventional pure tests (in the 
sense of Level3-see Sec. 4) correspond to the subsets 
of n, every conventional pure test is a weak test. If 
n is compact, X = n; in this case, the weak pure 
tests and the conventional pure tests coincide. In all 
other cases, there are nonconventional pure tests as 
well. 

Now consider the case of quantum mechanics. 
Assume that A acts irreducibly in the conventional 
Hilbert space He so that -we can embed He in H, as in 
Sec. 6. Then Aw ::J L(Hc), so that every conventional 
pure test is a pure weak test. However, as in the case 
of the states, there are nonconventional pure tests 
also-unless He = H, which happens only when He 
is finite dimensional. 39 

We have yet to justify the term "weak test" in the 
general case. It is clear (see below) that we cannot 
expect to give a meaning to (x, a) for an arbitrary 
state x and test a. However, if x is a discrete state, 
then Eq. (7), which holds for every uniform test a, 
can be used to define (x, a) also for every weak test a. 
It is easy to show that, with this bilinear form, Tw can 
be identified with the dual of the Banach space Swt .38 

(The complexification of Swt then becomes the predual 
of Aw.) This fact has a number of important conse
quences. 

First, the Krein-Milman theorem can be applied in 
the same way as in the case of states: The set T~ of all 
weak tests is convex and weakly43 compact and is 
therefore the weakly closed hull of the set T~ of all 
pure tests. Thus, any weak test can be weakly approxi
mated by a weighted mean of pure tests: In other 
words, given any weak test a, any finite set Xl' .•• , Xn 

of discrete states, and any number E > 0, there exists 
a weighted mean b = L lXiai of a finite number of 
pure tests al"" ,aN such that I(x;, a) - (Xi' b)1 < 
E, for 1 ::;:; i:::;; n. 

Secondly, it is easy to show that T:' is the weak43 

closure of T; so that every weak test, and in particular 
every pure test, can be weakly approximated (in the 
sense just explained) by physical tests. This justifies the 
application of the term "weak test" to the elements of 
T:' . 

Note that the expectation (x, a) has not been de
fined for every weak state x and weak test a. In fact, 
even in the commutative case, where (x, a) is the 
integral of the function representing a with respect to 
the measure representing x, we could (unless x is 
discrete) take for a the pure test corresponding to a 
nonmeasurable set; (x, a) cannot then be defined in 
any useful way. In the commutative case, this difficulty 
is mitigated by the Daniell integration theory, 31 in 
which the integral, defined initially for the continuous 
functions, is extended to the bounded Baire functions. 
The analogous procedure in the quantum case is the 
following. 6 ,35 

Call a set of operators in L(H) a-closed if it contains, 
together with any sequence that converges in the weak 
operator topology, also the limit of the sequence. 
Let AB be the a-closure of A, i.e., the smallest a-closed 
set containing A. AB is called a l;*-algebra.35 Let 
TB = Re (AB) and Til = {a: a E TB , 0::;:; a S I}. 
Then, TO c T'B c T,~. We call the elements of T'B 
Baire tests. Then, just as in the commutative case, the 
domain of the bilinear form (,) can be extended in 
a natural way from Sw X T to Sw X TB , so that the 
expectation (x, a) becomes defined for every weak 
state x and Baire test a. The reader is referred to 
Davies' paper35 for details. 

This quantum analog of the Daniell integral is of 
fundamental importance; it furnishes the construction 
corresponding to Level 3b of Sec. 4. However, our 
immediate concern is with the quantum analog of 
general topology. For this purpose, we return now to 
the discussion of the family of all pure tests. 

The lattice of all projections in the von Neumann 
algebra Aw plays the same role in the mechanics of an 
arbitrary C*-system as the lattice of all subsets of 
phase space does in conventional classical mechanics. 
It is convenient to have a terminology which empha
sizes this analogy. We call these projectionsq-sets, and 
the minimal q-sets (the analog of points in phase space) 
will be called q-points. In the general case, as in the 
case of classical mechanics, the q-sets may be identi
fied with the pure tests and the q-points with the pure 
states. Union and intersection of q-sets are to be taken 
in the lattice T~ of all q-sets. Afinite q-set is a union of 
a finite number of q-points. 

Formally, the q-sets are the projections in Aw. 
However, it is often convenient to visualize them as 
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the norm-closed allowed subspaces of H. Thus, given 
q-sets e and f, we say e is contained in f if ef = e, and 
e is orthogonal to f if ef = O. Of course, in the case of 
classical mechanics, the q-sets are also in 1-to-l 
correspondence with the subsets of a certain com
pactification of phase space, or, equivalently, with the 
characteristic functions of these subsets. 

If a is a weak test, e a q-set, and Q( a number, we say 
a = Q( on e jf the eigenspace of a of eigenvalue Q( con
tains e. Clearly, q-sets e and f are orthogonal if and 
only if there exists a weak test a with a = 0 on e and 
a = I on / Thus orthogonality, rather than the prop
erty of having a zero intersection, is the analog for 
q-sets of disjointness of sets. 

The q-sets of a C*-system form a particular case of 
what we might call a q-space: namely, the lattice of 
projections of an "atomic" von Neumann algebra. 
Here, we call a von Neumann algebra atomic if its 
lattice of projections is atomic; this happens if and 
only if the algebra is of the form EB{L(Hi)} for some 
set {Hi} of Hilbert spaces. If its algebra is commuta
tive, a q-space is isomorphic to the lattice of all subsets 
of a set; conversely, any such lattice is isomorphic to 
a q-space. In fact, the theory of q-spaces may be re
garded as the quantum analog of the theory of sets. 

8. THE QUANTUM ANALOG OF TOPOLOGY 

We have now followed the route, outlined in Sec. 4, 
that, starting with any C*-system, leads to the con
struction of pure states and tests. This shows us how 
a primitive observer would pass from Levell to Level 
3. The pure tests form a q-space which we shall call 
"the q-space l"-naming it by giving its largest ele
ment, in the same way as a space is named in set theory 
and in topology. The q-space 1 is the quantum 
analog of phase space, devoid at this level of anything 
resembling a topology. As we saw in Sec. 4, in order 
to introduce a "topological" structure our observer 
must retrace his steps to Level 2: i.e., he must refer to 
the class P of uniform tests. To see how he might 
proceed, consider first the case of classical mechanics, 
assuming for simplicity that phase space n is compact. 
If n is metrizable, its topology is easily determined in 
terms of P: Define the support e(a) of a test a to be 
the complement in n of the set on which a vanishes44 ; 

then the open sets coincide with the supports of the 
uniform tests. If Q is not metrizable, only a slight 
elaboration is required: Any open set e is now the 
support e = e(K) of some set K of uniform tests, where 
e(K) is defined to be the union of the supports of the 
elements of KY 

Now the same procedure can be adopted in the 

case of an arbitrary C*-system. We define the support 
e(a) of a test a to be the smallest q-set such that 
e(a)a = a and the support e(K) of a set K of tests to be 
the sup of the supports of the elements of K. Finally, 
a q-set is called open if it has the form e(K) for some 
set K of uniform tests. In this way, a certain class of 
open q-sets is distinguished. We might call this structure 
on the q-space 1 a q-topology since it reduces, in the 
classical case, to a true topology. 

Concerning the q-topology of the q-space of a C*
system, the following can be proved.45 We define a 
q-set e to be closed if 1 - e is open. 

(1) Any union of open q-sets is open; any intersec
tion of closed q-sets is closed. (But an intersection of 
two open q-sets is not necessarily open, and a union of 
two closed q-sets is not necessarily closed.) 

(2) Any q-point is closed. So is any finite q-set. 
(3) The q-space 1 is Hausdorff. (Given any two 

orthogonal q-points x and y, there are orthogonal 
open q-sets e and fwith e ;;::: x and f;;::: y.) 

(4) The q-space 1 is compact. (Define an open 
covering of the q-space 1 to be a set {ei : i E I} of open 
q-sets with 1 = V {e;: i E I}. Then any open covering 
has a finite subcovering.) 

(5) The q-space is normal. (Given any two orthog
onal closed q-sets e and j, there exist orthogonal 
open q-sets g and h, with g ~ e and h ;;:::/) 

(6) It is possible to obtain a quantum analog of the 
Gel'fand representation theorem for commutative C*
algebras. This theorem states that any commutative 
C*-algebra A is isomorphic to C(X) for a compact 
Hausdorff space X. Its relevance for classical me
chanics is explained in Sec. 5, the real part of A 
being the space T and X being a compactification of 
phase space n. Now any measurable functionf on X 
to the reals is determined by its inverse map f-1, 

which assigns to each measurable set in the reals a 
Borel set in X, and f is continuous if and only if the 
inverse image of each open set is open. Remembering 
that a set in X is just a pure test (i.e., a projection in 
A w ), we see that f-1 is nothing but the spectral res
olution of the multiplication operator given by the 
function / We can now state the quantum analog 
of the Gel'fand representation theorem. Define an 
element a of Tw to be q-continuous if its spectral res
olution assigns to every open set in the reals an 
open q-set. Then not only is every element of T q
continuous, but every q-continuous element of Tw 
belongs to T. [The first assertion is elementary; the 
second follows from (5).] 

We conclude this section with some remarks on the 
form taken by the q-topology of a C*-system in some 
special cases. Let us assume, as in Sec. 6, that A has 
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a faithful irreducible representation 7Te on the Hilbert 
space Hr. 

In the finite-dimensional case, it is trivial to prove 
that every q-set is open. This is the discrete q-topology. 
In the infinite-dimensional case, the discrete q-topology 
cannot occur, since it is clearly not compact. The 
simplest case is that given in Model 4 of Sec. 9. Here 
there are two coherent subspaces He and H"" which 
are countably infinite and I-dimensional, respectively. 
Denote the identities in L(He) and L(H "') by Ie and 
1"" respectively, so that 1 = Ie + 1",. The open 
q-sets are of two types: (a) any projection e ~ Ie and 
(b) any projection of the form e + I", where e is 
cofinite (i.e., Ie - e is finite). It is clear that we have 
here the quantum analog of the I-point compactifica
tion of a countable set! 

This example and Examples I, 2, and 5 in the Ap
pendix (for which the open q-sets have not been deter
mined explicitly) all exemplify the following situation. 

Although the whole q-space 1 is compact, the q 
space Ie, endowed with the "subspace q-topology," 
is in all these examples a discrete q-space. This follows 
from the fact that 7Te(A) contains all compact oper
ators. Secondly, from the fact that 7Te is faithful, it 
follows at once that any element of Twhich vanishes on 
Ie vanishes everywhere. This implies that the closure 
of Ie (defined as the smallest closed q-set containing 
Ie) is the whole q-space 1, i.e., Ie is dense in 1. Thus, 1 
can be described as a compactification of the discrete 
countable q-space Ie . 

This is analogous to the situation in classical me
chanics. There, as we saw in Secs. 5 and 6, the space X 
composed of the pure states is always a compactifica
tion of the conventional phase space Q. The analogy is 
not complete, however, since Q is not usually discrete. 
In the example discussed in Sec. 9, for instance, it can 
be regarded as the direct product of the circle and the 
reals. In this respect, Model 3 of the Appendix is of 
interest. Here, the q-topology of Ie is not discrete; in 
fact, no finite q-set is open. 

APPENDIX 

To illustrate the contents of Secs. 4-8, we now dis
cuss the case of a particle that moves on a closed curve. 
Although we describe this curve as a circle, using a 
coordinate which runs from 0 to 27T, and even speak 
of rigid rotations around this circle, I believe that the 
final structures which we set up will reflect only the 
structure of the curve as a manifold: i.e., they will be 
independent of any smooth change of coordinate 
(for instance, from (J to (J + t sin 0). 

If a primitive observer (Sec. 4) were faced with the 
task of studying such a system, his work would fall 

into two stages. First, the task of determining experi
mentally the structure of the sets T: and S: of physical 
tests and states. Secondly, the purely theoretical matter 
of developing the mathematical theory on this founda
tion, as in Sees. 5-8. 

As explained in Sec. 4, in discussing the first stage, 
we make full use of the conventional theory. However, 
once the physical states and tests have been chosen, 
no further reference to it will be made, the argument 
thereafter proceeding from the physical tests and 
states alone. 

Let r denote the circle 0 ~ 0 ~ 27T on which the 
particle moves. The Hilbert space of the conven
tional quantum-mechanical theory is He = L2cr). 
Assuming the measure in r to be dtt/27T, where dft is 
Lebesgue measure, the functions "Pn = ei7l8 , n = 0, 
± I, ±2, ... , form an orthonormal basis in He' 
and any bounded Hermitian operator a in He may 
be represented by its matrix elements amn = ("Pm' 
a"Pn). We denote the identity operator in L(He) by Ie 
and define the momentum p of the particle along its 
curved path by P"Pn = n"Pn. 

We assume (cf. Sec. 4) that the conventional theory 
is correct insofar as every physical test is represented 
by some bounded Hermitian operator in L(Hc). Our 
problem is to decide, on physical grounds, which 
operators arise in this way. We give several answers 
(described below as Models 1-4) to this question. 
These answers correspond to distinct assumptions 
concerning the class of experimental procedures avail
able to our primitive observer. Naturally, this class is 
not uniquely determined simply by the statement that 
we are concerned with a particle moving on a circle. 
There are, however, certain conditions on the physical 
tests which must hold in any reasonable model of this 
situation. This gives us an upper limit to the set T~ 
of physical tests. In Model I, we assume this biggest 
possible T:. 

At the other extreme, T~ cannot be void. In this 
connection, one may ask the following questions. Is 
it possible, in principle, for a primitive observer to be 
able to recognize this particular system, in the sense 
that he can distinguish it from other systems? [We 
have seen (Sec. 4) that this is not possible in the 
conventional theory.] And if it is, what is a minimal 
set of physical tests that suffices for this purpose? 
These questions provide the motivation for Model 2. 
Models 3-5 can be regarded as variations of Model 2. 

In principle, the choice of the set S~ of physical 
states would be expected to be as important as that of 
T~. We assume, indeed, that each physical state is 
represented by a positive Hermitian operator of 
trace 1 (as in the conventional theory). However, it is 
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not necessary to discuss in detail which operators arise 
in this way. We need only make the rather weak 
assumption that there are sufficiently many to deter
mine the usual operator ordering in T'/): i.e., if a E T'/) 
and a is not a positive Hermitian operator, then there 
is a physical state x with (x, a) < 0. (See also 
Footnote 21.) 

Our first condition on the class T~ of physical tests is 
the analog of the requirement in the case of classical 
mechanics (see Sec. 4) that every physical test a is 
represented by a smooth function on phase space. 
To translate this requirement into quantum mechanics, 
we first re-express it as follows. Let R", denote the 
operation of rotation around the circle through an 
angle f; thus, R",(a) is the test obtained by applying 
the method of analysis a after having rotated all the 
apparatus involved rigidly around the circle through 
the angle f. Then our requirement can be expressed by 
asserting that, for every state x, (x, Ria» is a smooth 
function of f. (Observe that it would not be sufficient 
to make this assertion only for every physical state x.) 
Now, in the quantum-mechanical case, we ,obtain 
easily 

(R ( ) - i(n-m) 
'P a mll - e amn • 

This gives 
a;"n = i(n - m)a m ,,, 

where 

a' = [dR<I>(a)] 
df <1>=0 

could be called the derivative of a with respect to the 
coordinate e. The condition for smoothness of a may 
now be expressed in the requirement that the Nth 
derivative ars ) should be bounded for every positive 
integer N. It can be shown l that a necessary and 
sufficient condition for this is that, for every integer 
N ~ 0, there exists a number K.v such that 

for all m and n. When this condition is satisfied, we 
shall say a is smooth in O. If a is also a Hermitian 
operator with spectrum in [0, I], we shall call it a 
smooth test. 

Our condition can now be expressed as follows: 
In any model of our system the physical tests must all 
be smooth tests. 

Modell 

As a first attempt, let us assume also that every 
smooth test is a physical test. Then T'/) is the real part 
Re (A'/) of the algebra Ap of all operators that are 
smooth in (). Let A be the C*-algebra which is the 

closure of Ap in L(Hc). Then the completion T of Tp 
may be identified with Re (A) so that the system is a 
C*-system. 

To determine the structure of A is a nontrivial 
matter. Certainly A -:F L(Hc), for the operator b given 
by bmn = 0m.2n is not in A. Nevertheless, A is large; 
indeed, it is nonseparable. This follows from the fact 
that f(p) E A for every bounded complex-valued func
tion f on the integers. 

The last remark suggests at the same time that our 
original assumption about the extent of the class T~ 
of physical tests is unrealistic. Surely there are too 
many uniform tests; how, for example, could the 
test "p is prime" be uniformly approximated by 
physical tests? 

In the next model we assume a much smaller class 
of physical tests. 

Model 2 

For our second model let us attempt to keep the 
class T~ of all physical tests as small as possible, while 
still retaining enough tests to (perhaps) characterize 
the particular system that concerns us. There seem to 
be three types of test that we should admit. 

(i) First, there should be tests that can be regarded 
as approximating observations of position on the 
circle. Accordingly, we assume that every smooth test 
a, which is a function a = f(O) of e, is a physical test. 
(It is easy to see that the condition of smoothness 
implies thatfis smooth in the usual sense.) Of course, 
by a function of e, we really mean a function on the 
circle r; if e is treated as a real variable, then the only 
functions to be admitted are those which are periodic 
with period 27T. Any such function corresponds to a 
multiplication operator in L(Hc)' i.e., f = mp means 
4>«() = f«()tp(O). For simplicity, we henceforth denote 
the multiplication operator that corresponds to the 
functionj( ) on r by f 

(ii) Similarly, there should be tests which corre
spond to observations of the momentum p. We take 
for this purpose those tests (they are all smooth) 
whose operators are functions of p. However, warned 
by Model I, we do not wish to call every test of the 
form a = F(p) a physical test: Although the question 
of smoothness of the function F does not arise (since 
the spectrum of p is discrete), the "behavior at in
finity" is important. However, it seems reasonable 
to assume that, if F is constant outside some finite 
interval, then F(P) is (or at least can be uniformly ap
proximated by) a p,hysical test. (In any case, we find 
that these tests are included in the third type, below.) 
We might wish to recognize as physical tests also 
certain other functions of p. For instance, in Model 
5 below, we assume the existence of tests which 
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distinguish the directon of rotation even for arbi
trarily large Ipl. 

(iii) With only these two types of physical test, it 
would be impossible to recognize states that are 
coherent superpositions of states of different p-values. 
We must therefore admit some other physical tests. 
Consideration of the example of light polarization and 
other cases where the Hilbert space is finite dimen
sional suggests, as a reasonable assumption, that if 
a Hermitian operator a with spectrum in [0, I] is 
such that amn vanishes for all but a finite number of 
values of m and n, then a is (uniformly approximated 
by) a physical test. 

It is easy to deduce from (iii) that the uniform 
closure T of Tp contains all compact Hermitian 
operators in L(He). Similarly, from (i) it fo11o\\s that 
T contains the multiplication operator corresponding 
to every continuous function on r; these operators 
form the real part of a commutative subalgebra of 
L(He) that may be identified with C(r). The smallest 
subalgebra of L(He) that can contain T is thus the 
direct sum A = C(r) + K, where K is the algebra of 
all compact operators in L(He). Indeed, if we assume 
T~ to be the smallest convex set containing the three 
classes of physical tests mentioned above, we can 
show that T = Re (A). Since A is a C*-algebra, this 
shows that we again have a C*-system. 

We now pass to Stage 2 of the development, in 
which we regard A as an abstract C*-algebra. The 
irreducible representations of A are as follows.46 

First, there is the conventional representation 7Te on 
the Hilbert space He . Secondly, for each point () in r, 
there is a representation 7T8 , on a I-dimensional Hil
bert space Ho' given by 7TO(J + k) = f«()10' where 
10 is the identity operator in L(He). [We have written 
an arbitrary element of A in the formf + k , where 
f E C(r) and k E K.] The "large" Hilbert space is thus 
H = He lOB H r, where H r is the direct sum EB8Er Ho; 
and the reduced atomic representation 7T on H is the 
direct sum 7T = 7Te lOB 7Tr, where 7TI' = EBoEr 7To: i.e., 
7TI'(J + k) = fr' where fI' denotes the multiplication 
operator in L(H r) that corresponds to the continuous 
functionf( ) on r. 

As well as the conventional pure states, there is one 
pure state, represented by the projection 10 on Ho' 
corresponding to each point 0 in r. This state repre
sents an ideal method of preparation in which the 
particle is localized exactly at the point O. As well as 
the conventional pure tests, represented by projections 
in L(He), there is a pure test in L(Hr ) corresponding 
to each subset of r. The general pure test is a sum of 
pure tests of these two types. 

The projection Ie on the coherent subspace He may 

be described as the greatest conventional pure test 
[though it must not be confused with the pure test 1, 
which is the identity in L(H)]. It corresponds to the 
proposition "the momentum is finite." Of course, 
(x, Ie) = 1 for every conventional pure state x; for 
any reasonable choice of S~ this also holds for every 
physical state. The nonconventional states and tests 
arise as limits of conventional ones; for instance, 10 is 
the weak limit (see Sec. 6) of the sequence {Yn}, where 
Yn is the conventional pure state Yn = ICPn)(CPnl given 
by the wavefunction CPn«() = (2n)-! for 101 < n-1 and 
CPn«() = 0 for I()I > n-1• 

The significance of the nonconventional states can 
also be explained in terms of "q-topology" as in 
Sec. 8. 

Model 3 

A difficulty with Model 2 appears if we attempt to 
discuss the time development of the system. Physically, 
this is most easily seen in the Schrodinger picture. The 
pure state 10 must develop, with the passage of time, 
into a nonconventional pure state in which the particle 
is spread all around the circle-but there is no such 
state. Mathematically, it is more convenient to use the 
Heisenberg picture. Corresponding to any time inter
val t there should be an automorphism Tt of the 
physical tests: The test a goes into the test Tt(a) whose 
method of analysis is wait a time t and then apply the 
test a. Extended by linearity, the mapping Tt becomes 
an automorphism of the complex linear space Ap 
spanned by T~; thus T~ and Ap should both be in
variant under the linear transformation T t • Now the 
trouble with Model 2 is that, if we use, for instance, the 
free nonrelativistic Hamiltonian p2, this condition is 
not satisfied. Indeed, from elementary quantum me
chanics, we obtain Tt(a) = eiP'tae-iP't. If a = einO , 
where n is an integer, then a is in A p , but a short cal
culation gives Tt(a) = eingei2ntPein't so that Tt{a) is not 
in Ap. 

We can avoid this difficulty with Model 2 in several 
ways. The first, which we call Model 3, is obtained as 
follows. As in the case of Model 2, we assume (a) that 
the physical tests form a subset T~ of L(He) and denote 
by A p the complex linear space spanned by T~, (b) 
that T~ contains all the tests that are represented by 
smooth functions of 0, and (c) that T~ is invariant 
under the time development corresponding to the 
nonrelativistic Hamiltonian p2. It then follows that, 
for every integer n and every number C1. in the interval 
o ~ C1. ~ 27T (other values of C1. are redundant), Ap 
contains the operator ein8eiap. It is mathematically 
natural, though physically unjustified, to remove the 
exceptional case by enlarging A p to contain also the 
functions of p of the form eiap with 0 ~ C1. ~ 27T. If 
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we do this, then we find, in view of the Weyl relations 

(Ai) 

(where n is any integer and 0 ~ Cl ~ 27T), that Ap is a 
*-algebra. Its norm-closure A is thus a C*-algebra, 
the smallest C*-algebra generated by the continuous 
functions of () together with the almost-periodic func
tions of p. The C*-algebra A is naturally associated 
with the problem of representations of the canonical 
commutation relations47 [in the modified form (AI) 
applicable to a particle moving on a closed curve]. 
We do not discuss the representations48 and other 
properties of A here, except to remark that A has been 
shown49 to be not a type I C*-:c 1gebra; indeed, even 
the identity representation of A does not contain the 
compact operators. 

One physically unsatisfactory feature of Model 3 is 
that the only functions of p recognized as physical 
tests are the linear combinations of periodic functions 
of p-such simple functions as the characteristic func
tion of the point p = 0 are excluded. The situation can 
be remedied by admitting as physical the tests de
scribed in Model 2 as type (iii). Doing this, we again 
obtain a C*-system, the rel~vant C*-algebra being the 
direct sum of the algebra A and the compact oper
ators. 

Model 4 

The assumption in Model 3, that tests represented 
by operators that are smooth functions of () are 
physical tests, can be criticized as follows. For 
simplicity, the argument is given in terms of classical 
mechanics. 

Consider a method of analysis which realizes some 
physical test a. When this method of analysis is applied, 
there will be, among other things, some random 
error, of order of magnitude E say, in the time at which 
the operation is initiated. Now consider a state c in 
which the particle is moving so fast that it makes 
many revolutions in the time E. Clearly, the expecta
tion (x, a) will then be practically independent of the 
(initial) position of the particle. Thus, as a function 
on phase space, the response function of the test a 
must tend to a constant as p -+ ± 00. In particular, no 
test whose response function is a nonconstant function 
of () alone can be physical. 

More generally, one can give for the operation of 
time displacement an argument analogous to that given 
at the beginning of this section for rotation around the 
circle. This leads to the conclusion that, for any phys
ical test a, Tt(a) should be an infinitely differentiable 
function of t. If we now add this condition to those 
already imposed on the physical tests in Model 2, we 

obtain a smaller class of physical tests which again 
determines a C*-system. 

This time, the C*-algebra A is relatively simple: 
It consists of all operators which differ by a compact 
operator from a multiple of the identity. (This C*
algebra is discussed briefly by Kadison. 33) There are 
now only two inequivalent irreducible representations: 
the identity representation and the I-dimensional 
representation 7T 00 given by 7T 00 (Cl1e + k) = Cl100 , 

where 100 is the identity operator in the I-dimensional 
Hilbert space H 00 in which 7T 00 acts. There is thus only 
one nonconventional pure state, namely, 100 , This 
represents the fact that, with his reduced collection of 
tests, our primitive observer can no longer distinguish 
between the nonconventional pure states 18 of Model 
2. 

Model 5 

The difficulty raised at the beginning of the dis
cussion of Model 3 is considerably abated if we assume 
instead the relativistic Hamiltonian (P2 + l)t. Since 
there is now an upper limit to the speed of the particle, 
the difficulties connected with Tt(a) no longer arise. 
The situation regarding the time development of the 
state 18 is also improved. If the particle is initially 
localized exactly at the point () = 0, then Ipl is very 
large. So, after a time t we expect to find the particle 
either at () = t and moving with velocity + 1 or at 
() = - t and moving with velocity -1. This suggests 
that the original localized state was not pure: It 
should still be possible to distinguish the direction of 
rotation. 

This is borne out by the mathematical analysis.! 
We enlarge slightly the class T~ of Model 2, admitting 
the possibility of distinguishing the direction of motion 
of a particle even in the limit of arbitrarily large Ipl. 
This leads again to a C*-system. The algebra A now 
consists of all operators in L(He) of the form a = 

e+/e+ + e_ge_ + k, where / and g are multiplication 
operators in C(r), k is a compact operator, and 
e+ = Ie - e_ is the projection on the subspace corre
sponding to p ~ 0. 

The reduced atomic representation is now slightly 
more complicated.46 There are two I-dimensional 
irreducible representations, and thus two pure states, 
for each point on the circle-one corresponding to 
each direction of rotation. 
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" In general, many procedures will be acceptable in this respect. 
Not only may they differ in irrelevant respects, they may even have 
apparently nothing in common and yet be acceptable by the physi
cist as preparations of the same state. This is discussed further below. 

15 Naturally, the operations constituting a method of analysis 
need not be performed "at an instant"; they may occupy any finite 
time. The same applies to a method of preparation. 

16 To say that an assertion is valid does not, of course, refer in any 
way to absolute "truth"; it means merely that it belongs to the 
current theory. 

17 "c" stands for "conventional." 
18 Our notation is as follows. T., T, and TI<' denote certain linear 

spaces connected with the tests. Subsets of a linear space are denoted 
by adding a superscript. Thus T~ is (i.e., will eventually be exhibited 
as) a subset of T •. A similar notation is used in the case of states. 

19 R. J. Plymen, Helv. Phys. Acta 41, 69 (1968). 
20 Here, we have made a rather mild assumption (see Footnote 21) 

about the extent of the class of all physical states. 
21 The assumptions on S~ (and even those on n) are not critical 

for the following considerations. Technically speaking, all that is 
required is that S~ should be a "full family of states" (see Ref. 5) 
for the algebra C(f.l). 

22 In the general theory (see Sec. 7), it is convenient to admit a 
slightly larger class of tests (called weak tests) than that described in 
this and the previous paragraph. The two classes differ in the case of 
classical mechanics whenever phase space f.l is not compact and in an 
analogous situation in the quantum-mechanical case. 

23 The ordering is the usual one, in which A ~ 0 means the 
spectrum of A is nonnegative. 

2' This corresponds to the fact that many different manifold 
structures can be defined on a given topological space f.l. For ex
ample, take for f.l the closed interval 0 :s; A :s; I. Two distinct mani
fold structures are given by (a) the set of all smooth functions of A, 
(b) the set of all smooth functions of A2. 

25 R. V. Kadison, Ann. Math. 56, 494 (1952). 
28 R. V. Kadison, Mem. Am. Math. Soc., No.7 (1951). 
27 L. Gillman and M. Jerison, Rings of Continuous Functions 

(Van Nostrand, Princeton, N.J., 1960). 
28 Here the tests and the weak tests coincide. However, in the 

general theory (see Sec. 7) the term "weak test" is given a precise 
meaning, while "test" is not. 

29 A partially ordered set is a lattice if every finite subset has a sup 
and an inf. It is complete if this is also true for every infinite subset. 
It is atomic if every element exceeds an atom, an atom being a mini
mal nonzero element. The lattice of all subsets of a set is a complete 
atomic Boolean algebra, and every such Boolean algebra is of this 
form. 

30 G. Birkhoff, Lattice Theory (revised edition: Am. Math. Soc. 
Colloq. Publ. XXV, New York, 1948). 

31 See, for instance, E. Hewitt and K. Stromberg, Real and Ab
stract Analysis (Springer-Verlag, Berlin, 1965). 

32 The notion of a system is a very important one and deserves a 
thorough discussion, but we do not attempt this in the present paper. 

33 For the definition and properties of CO-algebras see J. Dixmier, 
Les CO-algebras et leurs representations (Gauthier-Villars, Paris, 
1965), or, for a brief account, Haag and Kastler, Ref. 4, I. Kaplansky 
[in Surveys in Applied Mathematics (Wiley, New York, 1958), Vol. 
4), or R. V. Kadison, "Lectures on Operator Algebras," in Applica
tions of Mathematics to Problems in Theoretical Physics, F. Lur9at, 
Ed. (Gordon and Breach, New York, 1967). 

" I. E. Segal, Bull. Am. Math. Soc. 53, 73 (1947). 
35 E. B. Davies, Commun. Math. Phys. 8, 147 (1968). 
36 J. Glimm and R. V. Kadison, Pacific J. Math. 10, 547 (1960). 
37 References 6 and 7. 
38 R. Schatten, Norm Ideals of Completely Continuous Operators 

(Springer-Verlag, Berlin, 1960). 
3' I. Kaplansky, Ref. 33. 
'0 R. V. Kadison, Ann. Math. 66,304 (1957). 
n In many cases, A is uniquely determined by T, up to an iso

morphism or anti-isomorphism (see Ref. 5). 
" But only if A is not postliminaire. (See Dixmier, Ref. 33). 
.3 The topology referred to is the weak topology in Tw regarded as 

the dual of Swt; it is the ultraweak operator topology in Tw regarded 
as a subspace of the von Neumann algebra Aw' 

U Not the closure of this complement-a sense that is often used 
in the literature. 

•• The proofs will be given in a forthcoming paper (R. Giles and 
H. Kummer, "A Noncommutative Generalization of Topology," 
submitted to Can. J. Math.). After (1)-(4) had been established, a 
preprint arrived from C. A. Akemann [see Notices Am. Math. Soc. 
16, 500 (1969»), in which these results and others including "regular
ity" were obtained-in a slightly different form. Akemann's work 
was of assistance to H. Kummer, to whom I am indebted for the 
proofs of (5) and (6). 

'" I am indebted to L. A. Coburn and to T. L. Gardiner for dis
cussions and correspondence. 

" See, for instance, I. E. Segal, "Representations of the Canonical 
Commutation Relations," in F. Lur~at, Ref. 33. See also G. W. 
Mackey, Duke Math. J. 16, 313 (1949). 

'8 Two inequivalent irreducible representations are mentioned by 
Segal, Ref. 47. 

'" R. A. Derrig, Notices Am. Math. Soc. 16, 676 (1969). See also 
C. A. Berger and L. A. Coburn, Bull. Am. Math. Soc. 74, 1008 
(1968); 75, 468 (1969). 
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A fully renormalized set of integral equations is derived for the Green's functions of a theory with 
: .p': coupling. 

The purpose of this paper is to propose a set of 
renormalized integral equations for determining the 
Green's functions (specifically, the T functions) for a 
field theory with : 4>4: coupling. 

The equations can be iterated to yield a solution in 
the form of a formal power series in the coupling 
constant, each term being free of ultraviolet diver~ 

gences. The relation between this series and the usual 
renormalized perturbation series for the theory will 
be discussed in a future publication. 

Finding an exact, nonperturbative solution to the 
equations would be one possible route to the con~ 
struction of a nontrivial model of a field theory. The 
problem of obtaining rigorous solutions is, however, 
a formidable one and will not be discussed here. 

We give a formal derivation of the equations, with
out pretentions to rigor, but sufficient to provide the 
heuristic motivation for considering this particular 
set of equations. The equations themselves, in any 
event, mention only quantities which are, at least in 
perturbation theory, well defined. To give a rigorous 
sense to some of the intermediate steps of the deriva
tion would require interpreting renormalization 
constants and products of field operators in terms of a 
limiting process, as Zimmermann,1.2 for example, 
does. The derivation is in part patterned after the 
treatment of the : 4>3: coupling given by Symanzik.3 

We start with the field equation 

(0 + m2)4> = -AZ~-1:4>3: + ~m24>, (1) 

where Z and Z" are the wavefunction and vertex re
normalization constants, A and m are the renormalized 
coupling constant and mass, the renormalized field 
c/> obeys the commutation relation 

[4>(x, t), ¢(y, t)] = iZ-l~(3)(X - y), (2) 

and where :¢(X)3: is formally defined by setting 

:4>(X1)4>(X2)4>(xa) : 

= T( cp(X1) 4>(X2) cp(xa» - ~J;{XI - X2)CP(Xa) 

= ~F(X1 - xa)cp(x2) - ~F(X2 - xa)cp(x1), (3) 
where 

~F(X - y) = (01 T(cp(x)cp(y» 10). 

From (2) it follows that 

(oxo + m2
) (01 T(cp(xo) ... cp(xn» 10) 

= (01 T«Oxo + m2)4>(xO)CP(x1) ••• cp(xn» 10) 
n 

- iZ-1 ~ ~(4)(xo - Xi) 
;=1 

x (01 T(4)(X1)' .. 4>(X;-1)CP(Xi+I)' .. 4>(xn» 10). (4) 

Writing T(XO,'" ,xn) for (01 T(4)(xo)' .• 4>(xn» 10) 
and using the field equation (1), we get 

(ox. + m2)T(xo, ... , xn) 

= -AZvZ-IT(XO' Xo, Xo, Xl' ..• , Xn) 

+ 3AZ"Z-I~llO)T(xo, Xl, ... , Xn) 

+ bm21'(xo, Xl' ... , Xn) 
n 

- iZ-1 ~ b(41(Xo - X)r(Xl' ... , X;_l, Xi+l, ... , Xn) 
;=1 

or, equivalently, 

(Oxo + m2)1'(xo, ... , xn) 

= -AZ,,1'(Xo, Xo, Xo, Xl>' ", xn) 

+ 3AZv~ F(O)T(Xo, Xl, ... , Xn) 

(5) 

+ [Zbm2 - (Z - 1)(0"'0 + m2)]T(Xo, Xl' ... , Xn) 
n 

- i ~ b(41(Xo - X;)1'(X1' ... , Xj-l' X;+!, ... , Xn). 
;=1 

We introduce the truncated l' functions by 

1'(Xo, ... , Xn) = ~ 1'T(P1) ••• 1'T(p/l)' 
p 

(6) 

(7) 

where the sum runs over all (unordered) partitions 

of the variables X O,'" 'Xn into any number 1 =:;; 
It =:;; n of sets 

where Xu,"', X lv(1), ••• , X/Ll' ••• ,x/l,(/L) is a re
numbering of X o, ••• , X n • In terms of the TT, we can 
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express (5) as 

(0"'0 + m2)TT(xo, .•. , xn) 

= -AZ"TT(xo, Xo. XO. Xl.···. Xn) 

- 3A.Z".2 TT(XO' XO' QI)TT(XO' Q2) 
Q 

- 6AZ".2 TT(XO • PI)TT(XO• P2)TT(XO' Pa) 
p 

+ 3AZ,,~1.{O)TT(XO' Xl' ...• Xn) 

+ [Z6m2 
- (Z - 1)(0"'0 + m2)]TT(XO' Xl' ... , Xn) 

_ {i6(4)(XO - Xl), n = 1, (8) 
0, n:F 1, 

where the first sum runs over ordered partitions 

Q = (QI' Q2) 

of Xl'· .• ,Xn into two unordered sets, while the 
second runs over partitions 

P = {PI ,P2,Pa} 

of Xl' •.. , Xn into three sets. If Ql is empty, we get a 
term which cancels with the fourth term on the right
hand side of (8). If Q2 or PI' P 2, or P 3 is empty, the 
corresponding term fails to contribute, since TT with a 
single argument vanishes. 

It will be convenient to use a graphical notation. 
We write 

(9) 

for ~F and 
, (10) 

for ~;." use a cross 

)( (11) 

to denote iZ6m2 
- i(Z - 1)(0 + m2), and let a vertex 

+ (12) 

stand for -6iZv A. An oval with n legs 

(13) 

stands for TT with n arguments, and a brace is an 
abbreviation for a set of n legs; thus, 

o 
n 

~, (14) 

where the oval on the right has n legs below. The figures 
may, like Feynman diagrams, be interpreted in either 
momentum or configuration space. With these con-

ventions we obtain the following from (8): 

9=1+!+~6+tL60 
n (n-Il 0 ______ 

n n n 

(15) 

where the first sum is over ordered partitions of the n 
lower legs into two sets and the second sum is over 
partitions into three sets. 

We define I-particle irreducible parts by 

-v (16) 
(n-O) 

and 

~I= ~-~. 
n n Q 

(17) 

n 

If one wishes to think of the TT functions as sums of 
connected Feynman diagrams, then (16) and (17) 
single out those diagrams which cannot be discon
nected by one cut or less in the indicated channel. If 
n = 1, Eq. (15) is 

I - I + j + t ~. ([8) 

By use of (16)-(18), Eq. (15) becomes 

6= I +.l..ch +.lr; h +L ~ ...- 1 6 ~I 2 GIC> c56b. (19) n (n -I) __ "--v--" ________ 

n n n 

which reduces to an identity when n = 1, but is equiv
alent to (15) when supplemented by (16)-(18). 

For 2- and 3-partic1e irreducible functions, we write 

(20) 

n n 

(21) 
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where ® indicates three terms obtained from the one 
shown by permuting the three upper legs. If n = 3, 
Eq. (19) is 

~ - ~~, + ®~ ~r-+' (22) 

where ® indicates three terms obtained by permuting 
the lower legs and we have used (16) with n = 2. By 
use of (20)-(22), Eq. (19) becomes 

--n -----.........
n n 

(23) 

which reduces to an identity when n < 3, but is 
equivalent to (15) when supplemented by equations 
for n = 1 and n = 3 and by auxiliary definitions. 

Although the Bethe-Salpeter kernel B is (at least in 
perturbation theory) logarithmically divergent, we 
temporarily introduce it formally with 

(24) 

after which we can express the solution to (20) as 

§ 2 ~ ~,- ~~~ - E ~ • 
n n _ _____ 

(25) 

n n 

Further, we introduce the kernel K by 

*,- *' +®~~. 
+@~. +i i>®i~" (26) 

where the first ® refers to permutations of upper legs, 
the second, oflower, and the (2), of both. We can then 
write the solution of (21) as 

ill I i{K I l e l - - - - L: 
-..... 6 2 I 
n I 

'-0.-" ~ n n 

I~B ~ -@- -@L: . 
2 I I 

----- '--"'" n n 
(27) 

By the use of (24) and (26) and the assumption of sym
metry of Band K between their upper and lower argu
ments, (22) becomes 

and then (18) becomes 

(29) 

We now eliminate B in favor of its momentum-space 
derivative, which (if perturbation theory is a reliable 
guide) may be expected to exist even though B itself 
does not. From (24) we get 

Differentiation then gives 

~ -*. + t ~. + t ~ 

+t ~. +t ~., (31) 

where an arrow connecting two legs of an oval de
notes partial differentiation of the corresponding 
quantity with respect to the momentum flowing 
between the two indicated legs and 

(32) 

is the momentum-space derivative of ~.ir. From (28), 
by the use of (24), we get 

+- ~-t~,+(~ 
- ~+( A -~.), (33) 
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whereupon differentiation gives 

(34) 

where we may set 

(35) 

Defining the proper self-energy part by 

IT· = (I r -( t r ' (36) 

we find from (29) thaJ 

V· - I + k ~ - fa ~,- t ~, (37) 

Differentiating once, we get 

I 
2i (Z-llpJL + 1. 

I 36 

(38) 

Using (30) to rewrite the last two terms and differ
entiating again, we find, with the help of (31), 

I I 
IT'" - 2i(Z-I) + 1 
I I 36 

+1 
6 

(39) 

where [ ]' indicates the momentum-space derivative of 
the enclosed quantity. In (39) the overlapping diver
gences have been untangled, and only one more differ
entiation is required to remove the over-all divergence. 

It is still necessary to get rid of the undifferentiated 
Bin (26), the equation for K. We transform the second 
and third terms on the right in (26) by using (17) with 
n = 3, (16) with n = 4, (25) with n = 4, (24), and 
(20) with n = 4, and we obtain 

*' -*' -@ ~ 4i2 -®W 
-- - @-I iK I ~K 6 I 2 (40) 

We collect here the final proposed set of divergence
free equations: 

n 

----....--
n 

n 

~I= ~-~, 
n n Q 

n 

-\.j, 
(n-O) 

n 

(23) 

(21) 

(20) 

(17) 

(16) 
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I 
IT· 
f ' 

..!. [~K r +~[~,r 36 

+i [4>]' +1 
6 [~J 

I [ ~,J +.l [~'J. +-
6 !2 

(34) 

(35) 

(31) 

(36') 

(39') 

~K - *' -® ~ ~2 -@ m 
-- - @-11K I ~K 6 I 2 (40) 

These must be supplemented by conditions which 
allow the vertex function and IT * to be determined by 
(31) and (39'). We require that the vertex function 
(that is, T'l' with four arguments and ~~ amputated 
for each argument) reduce in momentum space to 
(-6iA)[(j(4)(PI + P2 + Pa + P4)/(27T)4] at the point 
(PI = P2 = pa = P4 = 0, for instance) chosen for the 
definition of the coupling constant. We further require 
that IT * /(p2 - m2) vanish at the point p2 = m2. 

Some of the equations derived here are contained 
in the work of Taylor,4 who has also investigated the 
possibility of finding exact solutions to similar sets of 
equations. Wu5 has described a prescription for differ
entiating Feynman graphs for : rfo4: coupling which 
gives results comparable to the perturbation expansion 
obtained by iterating the present set of equations. The 
full set of equations has been obtained independently 
by Symanzik.6 A related set was studied in the author's 
thesis. 7 
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. The insta~ts of time emissio~ of photoelectrons generated bya detector immersed in an optical field con
stitute a pomt compound POisson process. A complete definition of such a process is introduced to 
calculate some average values of the distribution. The shot noise due to this point process is also con
sidered and we study the difference .between th~ ':determ!nistic" and the "random" shot noises. They are 
completely de~ned by the set of their charactenstlc functIOns. We consider also the asymptotic properties 
of the shot nOise and we show that for large mean density of the point process the fluctuations are not 
described by a Gaussian, but by a Gaussian compound random function. Thus the central limit theorem 
is not strictly valid. An experimental setup to obtain these fluctuations is described and some statistical 
properties of the asymptotic shot noise are presented. 

1. INTRODUCTION 

Several papers have been recently devoted to the 
study of statistical properties of optical fields. Partic
ularly, the time instants {ti } at which a photon is 
absorbed by a detector in an electromagnetic field or a 
photoelectron is emitted constitute a point stochastic 
process, whose many properties are now clarified. 
This process can be defined by using either the classical 
representation of fields l - 3 or the quantum one.4.5 
The relations between the classical and quantum 
descriptions are now well established.6- s We also have 
many experimental results which confirm the theoreti
cal calculations, particularly on photon counting9- l3 

and photon coincidences.l4- l7 One of the main results 
of those studies is that the time instants {t;} define not 
a simple Poisson process, but a compound Poisson 
process, for which there are some correlation prop
erties which appear, for example, in bunching 
effects. 

In order to describe a point process, it is convenient 
to introduce the random function N(t), number of 
random points {t;} between ari arbitrary origin of 
time and the time instant t. For Poisson processes, 
N(t) has independent increments dN(O), and is almost 
surely a discontinuous function. ls The statistical 
properties of the random increments dN(O), or number 
of points {t i } between 0 and 0 + dO, can be used to 
specify the probability distribution of the process 
N(t). We will study this point in the case of a com
pound Poisson process. Particularly, we will compute 
expectation values, such as E[dN(Ol) ... dN(On)]' and 
their Fourier transforms, which are used in many 
applications, and particularly for the photoelectron 
shot noise. 

Usually shot noise appears when a point process 

passes through a linear time invariant system with 
impulse function (Rt). Therefore, the shot noise is 
described by the random function 

l
+oo 

X(t) = -00 R(t - 0) dN(O). (1.1) 

Nevertheless, for optical detectors this expression is 
not always convenient. In fact, the output to one 
photoelectron at the time instant 0 is generally not a 
deterministic function R(t - 0), but a random im
pulsion R(t - 0, w). This is particularly true in the 
case of the photomultiplier (PM): For very low light 
intensity it is well known that at random times we 
observe pulses which are also random in shape. This 
fact is due to the amplification by secondary emission 
which is essentially a random process of amplification. 
Thus it is necessary to introduce the concepts of 
"deterministic" shot noise, described by Eq. (1.1), 
and "random" shot noise in which R is a function of a 
point w in some probability space. In the two cases, we 
will define completely the statistical properties of these 
noises by the set of the characteristic functions of 
the random variable X(tl)' .. X(tn) for arbitrary ti 

and n. 
With the complete definition of the shot noise X(t), 

we can now explore its asymptotic properties. This 
problem is well known and very important in classical 
theory of shot noise, i.e., in the case where the dN(O) 
are the increments of a stationary pure Poisson process 
with density p, and R(t) a deterministic function. The 
result is that,for large p, X(t) becomes a Gaussian 
random function, which is a particular case of the 
central limit theorem. In practice this result is very 
significant because p is often large, and therefore the 
shot noise Gaussian. Therefore it is important to 
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explore the same problem for photoelectrons, i.e., for 
a Poisson compound process. 

At first we will show that, as for a pure Poisson 
process, thejiuctuations of the deterministic or random 
shot noises become very small compared to the mean 
value. This means that for high light intensity the 
instantaneous output of the detector is a good esti
mation of this intensity. Nevertheless, if we study these 
fluctuations we obtain that, for large mean density of 
the point process, they are no longer described by a 
Gaussian stochastic process, but by a new process 
defined by its characteristic function and called com
pound Gaussian stochastic process. Therefore, the 
central limit theorem is no longer valid for photo
electrons. But the question arises if it is possible to 
separate the fluctuations from the mean value of the 
shot noise, because for large p the fluctuations are 
very small compared to the mean value. For this 
purpose, we describe an experimental method which 
allows this observation by using two optical detectors 
in the same optical field, as in the Hanbury Brown 
and Twiss experiment, and an adapted signal process
ing of the outputs of the detectors. 

To explain this experiment, some properties of 
Gaussian compound random functions are reviewed. 
Particularly, we calculate some probability distri
butions of the asymptotic shot noise fluctuations for 
optical fields, obtained by superposition of thermal 
light and ideal laser light. 

2. DEFINITION AND SOME PROPERTIES OF 
POISSON COMPOUND POINT PROC~SS 

Let us call {t i } the time instants at which photo
electrons are emitted by a detector in an optical field. 
The instants {Ii} constitute a random point process.19 

The first derivation of some properties of such process 
by using a quantum theory of electromagnetic meas
urement was given by Kelley and Kleiner.5 We will 
present more general results, but without discussing 
the microscopy physical origin of the process. 

This point process is represented by the random 
function N(t) = S~ dN(O), where dN(O) are the random 
increments of N(t). The probability distribution of 
N(t) can be defined if, for every n and every set of 
81 , O2 , ••• , 8 n' we know the probability distribution 
of the n-dimensional random variable dN«()1)," . , 
dN(8n )· 

We characterize a Poisson compound point process 
by the following properties: 

(i) Pr [dN(8) > 1] = o(d8), which means that the 
random variable dN(8) has only two values, 0 or 1. As 
a consequence we have dN"(8) = dN(8). 

(ii) For different 8i , 

Pr {[dN(Ol) = I] . [dN(02) = I]' .... [dN(On) = I]} 

= E[p(81)p(82)· •• p(On)] dOl d02 • •• dOn, (2.1) 

where p(8) is a stationary, nonnegative random 
function. Evidently, if p(8) is a nonrandom constant, 
Eq. (2.1) defines a stationary pure Poisson process; 
if now p(8) is a nonrandom function of time, we have 
a nonstation'ary pure Poisson process.20 We obtain a 
compound (or a posteriori) process, because, for 
a given trial of the random function p(8), the a 
posteriori distribution of dN(8) is given by 

Pr ([dN(Ol) = I]· .... [dN(On) = I] I p} 

= P(Ol)" . p(On) dOl" . dOn' (2.2) 

which is the definition of a Poisson nonstationary 
process. Obviously a priori distribution given by Eq. 
(2.1) is obtained by averaging a posteriori distribution 
given by Eq. (2.2). 

In the case of optical fields, it is well established 
that p(O) is proportional to the instantaneous light 
intensity.L5 For the following discussion, we will 
write 

p(O) = ocF(O), (2.3) 

where oc is a nonrandom parameter and F(O) a non
negative random function. By varying oc, we describe 
the variations of the mean light intensity which can be 
obtained by various means and for the asymptotic 
problem we will study the case where oc ~ 00, which 
appears for fields with very large intensities. 

For many problems, as for example shot noise, it is 
important to have expre.ssion of the moments of 
dN«()) , and we will now establish some properties of 
such moments. 

A. First-Order Moment 

The random variable dN(O) has only two values, 0 
and 1. Therefore, 

E[dN(O)] = Pr [dN(O) = 1] = ocE[F(8)] dO. (2.4) 

If F(t) is stationary, we can introduce the mean 
density p of the process and write 

E[dN(O)] = p dO, (2.5) 

where p is evidently E[p(O)] = ocE[F]. 

B. Second-Order Moment 

The notation of the second-order moment 

has the meaning of a distribution on the space 
R2(01 G9 ( 2), This distribution can be decomposed in two 
parts. First, if 01 ,.t. 8z, we obtain, by using Eq. (2.1) 
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and the same method as for the first-order moment, 

Moreover, i/Ol = Oz, we have 

which is proportional to dOl and therefore is a distri
bution on the curve Ol = Oz of the space RZ. Therefore, 
we can write the complete expression of the moment 

E[dN(Ol) dN(Oz)] 

= {~ZE[F(Ol)F(Oz)] + ~E[F(Ol)]b(Ol - Oz)} dOl dOz , 

(2.8) 
where b is the Dirac distribution. 

With this notation, 

where ~Ol and ~Oz are arbitrary finite time intervals, 
is finite. 

Now, if F(O) is a wide sense stationary random 
function, this moment depends only on Ol - Oz, and 
is 

E[dN(Ol) dN(Oz)] 

= {cx.zr F(Ol - Oz) + pb(Ol - Oz)} dOl dOz , (2.9) 

where r F(r) is the correlation function of F(t). In 
this equation, the first term describes the Hanbury 
Brown, and Twiss effect, or bunching effect of photo
electrons, and the second is the contribution of a sta
tionary Poisson process with density p. 

For the following, it is convenient to introduce the 
random function l(O) defined by 

l(O) = F(O) - E[F], (2.10) 

which is clearly 0, if F(O) is nonrandom (Poisson 
process). Thus, using cx.E[F] = p, we can introduce the 
second-order density M(Ol, Oz), defined by 

E[dN(Ol) dN(02)] = M(OI' Oz) dOl dOz , (2.11) 

and from Eqs. (2.9) and (2.10) we obtain 

M(Ol' (2) = p2 + 1X2f' F(Ol - 6z) + pb(6l - (2), 

(2.12) 

where f' F(r) is the correlation function of F(t). 
The Fourier transform of M(OI' 0z) plays an im

portant role in the following discussion. As we suppose 
that F(t) is stationary, this Fourier transform can be 
written 

Y(VI' V2) = p2b(Vl)b(vz) + b(Vl + vz)[OC2yZ"(VI) + p], 

(2.13) 

where YF(v) is the spectrum of l(t), or the Fourier 
transform of f' F( 7). Obviously, the term b(Vl)J(VZ) 
means that dN(t) has a nonzero mean value, and 
b(VI + v2) that it is stationary. 

C. Third-Order Moment 

By a simple extension of the preceding calculations, 
we obtain 

E[dN(Ol) dN(02) dN(03)] 

= {cx.3E[F(OI)F(Oz)F(Oa)] 

+ O(Z 2 O(Oi - 0 )E[F(O;)F(Ok)] 
(;.iJ 

+ pb(OI - (2)b(OI - Oa)} dOl dOz dOa. (2.14) 

In the sum 4i,J]' we have three terms corresponding 
to the three combinations «(h, Oz), (Ol' 0a), and (02 , 

Os)· 
D. Fourth-Order Moment 

For a general discussion, it is necessary to write 
explicitly this moment which has the structure of 
higher-order moments, but is considerably simpler to 
write down. By extension of previous calculations, this 
moment can be written 

E[dN(01) ... dN(04)] = M(01' ... , ( 4) dOl' .. d04, 

(itS) 
where 

M(01' ... , ( 4) 

= cx.4E[F(01) ... F(04)] 

+ 0(3 L b(O; - 0 j)E[F(O;)F(Ok)F(OI)] 
[i. i] 

(~) 

+ (1..2 2 O(Oi - 0 j)I5(O; - 0k)E[F(Oi)F(OI)] 
[i. j .k] 

m 
+ 0(2 L b(Oi - OJb(Ok - (Jl)E[F(Oi)F(Ok)] 

i.j,k.1 
311 

For each sum we have indicated the number of terms. 
The term LU.i.k.l] is particularly interesting. Indeed, 
it is a sum of 3!! = 3 terms, which are obtained by 
considering in all the possible permutations of the 
fJ i , only the Gaussian ones,21 i.e., (01, fJ 2)(Oa, 04.), 
(01 , Oa)(02, fJ 4), and (Ol' ( 4)(02 , Oa). This pOint is 
important for the following discussion. 

As for the second-order moment, it is necessary to 
write Eq. (2.16) with the function F(O). After some 
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calculations, we obtain 

M(OI' ... , ( 4) 

= p4 + p2
OC

2 2 E[F(Oi)F(Oi)] 
[i.i] 

m 
+ poc3 I E[F(Oi)F(Ok)F(Oz)] 

[i] 

(~) 

+ oc4E[F(OI)F(02)F(03)F(04)] 

+ 2 b(Oi - Oi)(p3 + poc2 .2 E[F(Oi)F(Ok)] 
[i.i] [ •. k.Z] 

(~ (~ 

+ .'E[ F(O,)1'( O,)F( 0,) l} 

+ I b(Oi - 0i)b(Oi - Ok){p2 + oc2E[F(O;).F(Oz)]} 
[i.i.kl 

(~) 

+ 2 b(Oi - 0i)b(Ok - OZ){p2 + oc2E[F(Oi)F(Ok)]} 
[i·U· I ] 

We will not write explicitly the Fourier transform 
of the function M(OI' ... , 041, which is obviously not 
very simple. For our discussion it is only necessary to 
extract from this Fourier transform the part which is 
distributed on the "Gaussian manifolds" of the space 
R4, (VI @ V2 @ Va @ V4).22 These manifolds are defined 
by the equations 

Vi + Vj = 0, 'Vk + Vz = 0 (2.18) 

and in R4 there are evidently 3!! = 3 different Gauss
ian manifolds corresponding to the 3 Gaussian per
mutations of (i,j, k, I). 

Let us, for instance, consider the Gaussian mani
fold defined by 

'VI + V2 = 0, V3 + V4 = O. (2.19) 

The distribution g(VI' V3) on this manifold is the 
coefficient of b(VI + v2)b(V3 + V4) in the Fourier 
transform of M(OI' ... , ( 4), By inspection of all the 
terms of Eq. (2.17), we find 

g(Vl' V3) = oc4h(VI' v3) 

+ pOC2[J1F(VI) + YF(V3)] + p2, (2.20) 

where h(Vl' v3 ) is the contribution on this manifold of 
the Fourier transform of E[F(OI)'" F(04)]' This 
function h(Vl' V3) is called "Gaussian density" 21 if it 
has the particular structure 

h(Vl' v3 ) = YF(V1)YF(V3), (2.21) 

i.e., a product of power spectra of F(t). If Eq. (2.21) 

holds, we obtain 

g(V1, va) = [p + ocy F(Vl)][P + OCYF(Va)], (2.22) 

and, from Eq. (2.13) and the definition (2.21), we see 
that g(v1 , va) is also a "Gaussian density." Evidently, 
if h(VI' v3) is not a "Gaussian density," i.e., if Eq. 
(2.21) does not hold, g(Vl' V3) cannot be a "Gaussian 
density." The same results can be easily found for the 
two other Gaussian manifolds of the space VI @ •.• @ 

V4, and by longer calculations extended for the 
higher-order moments of dN(O).23 

As an example, we can study the form of the func
tion h(Vi' Vi) for the thermal light, i.e., when the 
optical field is a Gaussian quasimonochromatic field. 
In this case, the function F(O) [defined by Eq. (2.3)] 
can be written as 

F(O) = Z(O)Z*(O), (2.23) 

where Z(O) is the analytic signal of a zero mean, 
Gaussian, and quasimonochromatic real rf. Therefore, 
we have 

= E[Z(tl) ... Z(t4)Z*(tl) ... Z*(t4)], (2.24) 

which can be expressed only with 

r z( r) = E[Z(t)Z*(t - r)], 

by classical expressions for the Gaussian case. From 
this expression we can prove that the distribution of 
the Fourier transform on the Gaussian manifold 
(VI + V2 = 0, V3 + V4 = 0) is given by Eq. (2.21) in 
which YF(v) is the Fourier transform of f'F(r), which 
for a Gaussian field is equal to Ifz(r)1 2• Therefore, 
for the non-Gaussian random function F(t), we have a 
"Gaussian density" on the Gaussian manifolds, and 
this result is true for higher-order moments. 

The results of this section have a direct application 
to the deterministic shot noise described by Eq. (Ll). 
For instance, the general moment of X(t) can be 
written 

+00 

E[X(tl) ... X(tn )] = r ~ J R(tl - ( 1) ••• R(tn - On) 

-00 

X E[dN(Ol) ... dN(On)]. (2.25) 

Particularly by using Eq. (2.5), we obtain 

E[X(t)] = pG(O), (2.26) 

where G(v) is the transfer function, Fourier transform 
of R(t). Similarly, we obtain from Eq. (2.10) the power 
spectrum of X(t) by 

Yx(v) = G2(O)p2b(v) + p IG(v)12 

+ OC2YF('V) IG('V)12. (2.27) 
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In this expression the first term is due to the nonzero 
mean value of X(I), the second describes the shot 
noise of a Poisson process with density p, and the 
third, owing to the fluctuations of F(t), describes the 
Hanbury Brown and Twiss effect. A similar expression, 
obtained by a different method, was already presented 
by Mandel. 24 

Moreover, the structure of the higher-order mo
ments of dN(O) can be used for the determination of 
some asymptotic properties of X(t).21 For a given 
mean density p of the point process, let us consider 
the limit of X(t) when the time constant T of the linear 
system becomes very large (pT» 1). The asymptotic 
properties of X(t), after such very narrow band 
filtering, depend only on the structure of the Fourier 
transform of the higher-order moments of dN(O) in 
the space VI ® V2 ® ... ® V n • If we have a "Gaussian 
density" on the "Gaussian manifolds" of this space, 
the asymptotic shot noise is described by a Gaussian 
stochastic process. That is the case for a stationary 
Poisson process,21 and for a compound Poisson 
process we have seen that the result depends on the 
properties of the random function F(t) which de
scribes the light intensity. Nevertheless, we have 
shown that for thermal light the result is still true and 
therefore the asymptotic shot noise is Gaussian. 

3. PHOTOELECTRON RANDOM SHOT 
NOISE 

In this section, we study the statistical properties of 
the "random" shot noise which, as we have seen, 
describes more precisely the output of a detector of 
such a photomultiplier than the deterministic one 
defined by Eq. (1.1). Evidently, the "deterministic" 
shot noise is a particular case of "random" shot noise, 
and therefore we will obtain general expression valid 
in the two cases.25 

The random function describing this noise can be 
written 

i+OO 

X(t) = -00 dX(t; 0), (3.1) 

in which the dX(t; 0) are random increments depend
ing on the fixed parameter t. The increments dX(t; 0) 
are connected with the dN«(J) , defined previously by 
the fact that dX(t; (J) = 0 if dN«(J) = 0 and dX(t; (J) = 
RoCt - 8; w) if dN(8) = 1, where Ro(t; w) are a se
quence of nonstationary random functions defined on 
the same probability space and depending on the param
eter 8. They are assumed independent and with the 
same probability distribution. This assumption means 
that the random impulses due to different photo
electrons are independent, which can be considered 
in a first time as a good physical approximation. In the 

a posteriori distribution, i.e., for a given F(t), the 
dN(e) are independent (Poisson distribution) and our 
assumption on the Ro(t; w) functions means that the 
increments dX(t; e) are also independent. This allows 
the calculation of the a posteriori characteristic func
tion. For that, let us consider n arbitrary-time instants 
tl ... tn. The a posteriori characteristic function is 

!p[{Ui} IF] = E {exp [i ~i UiX(t i )] IF}. (3.2) 

We can write 

in which the increments dX' are still independent. This 
allows us to write the second characteristic function by 
the expression 

'P'[{ui } IF] = log !p[{u i } IF] 
(3.4) 

From the structure of dX(t; e), we deduce that 

E[ejdx'(O)] = 1 + [A({u;}; {ti }; e) - I]O(F(e) de, (3.5) 

where 

A({uj}; {ti}; 0) = Eexp [i tiU;Rit; - e)} (3.6) 

By using Eq. (3.4) we obtain finally 

!p[{ Ui} I F] = exp 0( 1+00
00 

[A( {U;}; {ti }; 8) - 1 ]F(8) de, 

(3.7) 

and the a priori characteristic function is obtained by 
taking the ensemble average on F, which gives 

tp[{Ui}] = E exp {O(I+oo
oo

[A({U;}; {t i }; 8) - 1]F(e) de}. 

(3.8) 

As previously noticed, this expression is still valid in 
the case of the nondeterministic shot noise and the 
only difference is that we do not have to take the 
ensemble average in Eq. (3.6) because R is not random. 
For this case, a similar result was already presented by 
Hellstrom.26 

By a limited expansion of the characteristic function 
we can obtain the moments of X(t). Thus, in the 
stationary case, the mean value of X(t) is 

f+oo 
E[X(t)] = p -00 E[R(t - e)] d8 = ph(O), (3.9) 
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in which h(v) is the Fourier transform of functions Ya(t) and Za(t) defined from X(t) by 

H(t) = E[R(t)]. (3.10) yaet) = X(t) = X(t) - E[X(t)], (3.15) 

The result given by the Eq. (3.9) has the same form as 
the mean value of the deterministic shot noise given 
by a stationary Poisson process with the mean density 
p and a linear filter with impulse function H(t), mean 
value of the random function R(t). Thus, H(t) can be 
considered as an equivalent impulse function. 

The correlation function of X(t) is given by an ex
pansion limited to the second order and we obtain 

E[X(tl)X(t2)] 

= p2h2(0) + p L+",'" E[R(tl - O)R(t2 - 0)] dO 

+'" 
+ a2f f H(tl - Ol)H(t2 - ( 2)[' F(8l - ( 2) d8l d82· 

-00 

(3.11) 

By Fourier transformation we obtain the power 
spectrum of X(t) which can be written 

Yx(v) = p2h2(0)b(v) + p Ig(v)12 + a2YF(v) Ih(v)12, 

(3.12) 

where g(v) is the Fourier transform of 

f+'" )-00 E[R(t)R(t - -r)] dt. 

It is interesting to compare this expression with Eq. 
(2.27), which is the power spectrum of the deter
ministic shot noise. For the random shot noise, R(t), 
and, therefore, its Fourier transform G(v), are random, 
and we have 

Ig(v)12 = E[IG(v)j2]. 

Moreover, from Eq. (3.10) we obtain 

Ih(v)12 = IE[G(v)]12, 

(3.13 ) 

(3.14) 

and, therefore, Ig(v)12 and Ih(v)12 are in general quite 
different. In particular the last term can disappear 
completely if E[G(v)] = 0 = E[R(t)]. Evidently, that 
is not in general the case, if the randomness of R(t) 
only due to the fluctuations of secondary emission in a 
photomultiplier. 

Now we will consider some asymptotic properties of 
the shot noise X(t). In the previous section, we have 
seen that the deterministic shot noise becomes Gauss
ian for very large time constant of the linear system 
and with some conditions on the light intensity. Now, 
we will study the asymptotic problem appearing if a, 
i.e., the mean light intensity, or the mean density of 
points [see Eq. (2.4)], becomes very large. 

For this discussion let us introduce the two random 

Z,,(t) = X(t) - aFR(t), 

where FR(t) is 

F R(t) = f"ooH(t - O)F(O) dO 

= L+oo'" E[R(t - 8)]F(8) d8. 

(3.16) 

(3.17) 

At first, let us suppose that F(t) is a nonrandom 
junction, i.e., that the point process is a pure nonsta
tionary Poisson process. In this case, we obtain from 
Eq. (3.7) E[X(t)] = cxF R(t), and, therefore, 

Y,,(t) == Z/t). (3.18) 

Moreover, the standard deviation of yaet) is 

E[Y!(t)] = a f E[R2(t - O)]F(O) d8. (3.19) 

If we assume that F(O) is bounded and R(t) square 
integrable, the integral in Eq. (3.19) is finite and we 
obtain, therefore, 

lim q.m. Yit) = 0, (3.20) 
a ....... 00 (J. 

where the quadratic mean limit is understood. This 
means that 

. X(t) 
hm q.m. - = F R(t). (3.21) 

IX .... 00 ex. 

This well-known result means that for very large IX the 
fluctuations of the shot noise are suppressed. Evidently 
as convergence in the quadratic mean gives converg
ence in distribution, the characteristic function of 
X(t)Ja converges to the characteristic function of F R(t). 

But for the deterministic shot noise there is also 
a well-known result concerning the fluctuations of 
Y,,(t)Y For large IX, Y,,(t)!IX! converges in distribution 
to a Gaussian random function defined by the co
variance 

r(tl' t2) = f"ooR(t1 - 8)R(t2 - 8)F(O) dO. (3.22) 

By using Eq. (3.7) it is possible to show that this 
particular form of the central limit theorem is still 
valid for the random shot noise and the covariance of 
the limit process is now 

L+ooooE[R(tl - O)R(t2 - O»)F(O) dO. 

Now let us consider the same problem for a 
stationary Poisson compound process, i.e., for the case 
where F(t) is a stationary random function. In this 
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case Y",(t) and Zit) are different and Eq. (3.18) must 
be replaced by 

Y",(t) = Z",(t) + OCFR(t) , (3.23) 

where 

It is easy to show that Eq. (3.19) and Eq. (3.20) are 
no longer valid, because of the term in oc2 in Eq. (2.8). 
Therefore, we will calculate E[Z~(t)] and by using Eqs. 
(3.1), (3.11), and (3.17) we obtain 

E[Z!(t)] = E{[X(t) - ocF R(t)]2} 

= E[X2(t)] + oc2E[F~(t)] - 2ocE[X(t)F R(t)] 
(+CXJ 

= ocE[F] LCXJ E[R2(t - e)] de. 

From this equation we deduce that 

lim q.m. Zit) = o. 
«-+C() at 

Thus we obtain from Eq. (3.16) 

. X(t) 
hm q.m. - = F R(t), 

Gt-+ 00 r:J. 

(3.24) 

(3.25) 

(3.26) 

but this equation is quite different from Eq. (3.21), 
because here F R(t) is a random function. Evidently the 
interpretation is the same and as previously the 
fluctuations of the shot noise are suppressed. Likewise 
the characteristic function of X(t)foc converges to the 
characteristic function of F R(t). Moreover, we obtain 
from Eq. (3.23) that 

. Yit) - ( hm q.m.- = FR t), (3.27) 
a ...... co ex ' 

which is to compare with Eq. (3.20), because for a 
nonrandom F(t), FR(t) = O. 

Now let us study as previously the fluctuations of the 
shot noise. Evidently they are no longer described by 
Y",(t), because we see from Eq. (3.27) that Y",/oct is not 
finite when oc -+ 00. But we see from Eq. (3.24) that 
Z",foc! remains finite for oc -+ 00, and therefore it is 
interesting to study the stochastic limit of this random 
function. The characteristic function tpa[{uJ] of Za/rx.! 
is obtained directly from Eq. (3.8) and after simple 
calculations we obtain that 

(3.28) 

where 

9'1O?[{Ui}] = E exp [-! ~ UiUj 
'1 

X L:CXJE[R(ti - O)R(tj - e)F(O) dol (3.29) 

Incid.nt light 

(-) 1----
output 

P.M.2 Subtraction 

FIG. I. Experimental method to obtain the asymptotic fluctuations 
of the random shot noise. The two photomultipliers receive the same 
light and have the same statistical properties. The two signals are 
subtracted and analyzed. 

If F(t) is nonrandom, we do not have to take the first 
expectation value in this equation and therefore, as 
we have seen previously, 'PCXJ [{ui }] is the characteristic 
function of a Gaussian random function. If F(t) is 
random, which.is generally the case in optical prob
lems, 'PO? [{u i }] is the characteristic function of a 
compound Gaussian random function. Therefore, the 
asymptotic fluctuations of the shot noise are no longer 
Gaussian, and the central-limit theorem is not strictly 
valid. The same kind of situation appears in the prob
lem of the limit of a random number of independent 
random variables. 28 

At this point of the discussion it is important to 
explore if it is physically possible to obtain the 
function Z",(t). Indeed to define Z",(t) we must know 
the random function F R(t) which appears in Eq. (3.16). 
This function defined by Eq. (3.17) is obtained by 
filtering F(t) in a linear system with impulse function 
H(t). But F(t) is not exactly known in a real photo
detector, because it is the instantaneous mean density 
of the compound Poisson process which is not meas
urable experimentally by studying only the point 
process. Evidently F(t) is proportional to the light 
intensity which can be measured in some cases by 
another detector in the same field. 

However, without a measurement of F(t) it is pos
sible to observe the random function Z",(t), i.e., the 
fluctuations of the shot noise, by using a symmetrical 
system described in Fig. 1. As in the Hanbury Brown 
and Twiss experiment, we take two identical photo
.detectors (i.e., photomultipliers) in the same coherence 
area of an optical field. We assume that the two 
detectors are independent but identical, and therefore 
the two random shot noises have the same statistical 
properties and distribution, but correlated by the same 
light intensity F(t) in the a priori distribution. Thus 
after subtraction we obtain the signal 

i+CXJ 
Set) = -00 dS(t; 0) (3.30) 
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with 

dS(t; fJ) = dX1(t; 0) - dXit; fJ), (3.31) 

where the increments dXI and dX2 have the same 
meaning as in Eq. (3.1). Now we can use the same 
procedure to calculate the characteristic function 
CPs[{u j }] of S(tI) ... S(tn). The only difference appears 
in Eq. (3.6), which is now, with the same notations, 

AS({Ui}; {ti}; fJ) = E[COS ~iUiR6(ti - fJ)} (3.32) 

From this equation and Eq. (3.8) we can calculate 
the characteristic function of S(t)/(X~ which for large 
oc converge to Poo [{ui }] defined by Eq. (3.29). Thus 
Zr/t)/oci and S(t)/oci have the same limit in distri
bution for oc -+ 00, which describes the "fluctuations" 
of the asymptotic shot noise. 

Now we will explore more carefully the properties 
of these asymptotic fluctuations. 

4. PROPERTIES OF THE ASYMPTOTIC 
FLUCTUATIONS OF THE SHOT NOISE

COMPOUND GAUSSIAN PROCESSES 

The random function M(t) which describes the 
asymptotic fluctuations of the shot noise is completely 
defined by the characteristic functions of M(tI), ... , 
M(tn) given by Eq. (3.29). This function can be 
written 

P[Ul' ... , un] = E exp (-i ~ U;U,.rii ) , (4.1) 
'.' 

where rij is a random variable defined by 

The random function M(t) is called a compound 
Gaussian process because if F(e) is nonrandom, M(t) 
is a pure zero mean Gaussian random function. From 
the probability distribution of the random function 
F(e) which describes the fluctuations of the light 
intensity, we can in principle obtain the probability 
distribution of the n2 random variable r ij' of which 
evidently only n(n - 1) are different. This distribution 
is defined by a characteristic function 

CPr[{Vii }] = E( exp i ~ii Viiri} 

With this function, Eq. (4.1) can be written 

(4.3) 

(4.4) 

This equation defines completely M(t), and we will 
at first consider the I-dimensional case. Thus the 

characteristic function of M(t) is 

(4.5) 

where Pre u) is the characteristic function of the random 
variable 

i+oo 
r = -00 E[R2(t - O)]F(O) dO. (4.6) 

The probability distribution of M(t) is obtained by 
taking the Fourier transform of cp(u), and we obtain 

p(x) = (27T)-! roo 1! e-",2/21'Pr(Y) dy, 
Jo y 

(4.7) 

where Prey) is the probability distribution of r. We 
have evidently Prey) = 0 for Y < 0, because r is a 
positive random variable. We have the same kind of 
equation for the probability distribution of the photon 
counting, in which the kernel is a Poisson kernel in
stead of a Gaussian one, and therefore we can apply 
the same kinds of methods. Particularly, it is in general 
very difficult to calculate the probability distribution of 
the random variable r, integral of a random function. 
Thus we will suppose that the correlation time of F(t) 
is much greater than the average time constant of the 
random filter R(t). In this case the integration can be 
omitted, and r has the same statistical distribution as 
the light intensity F. 

To perform the calculations we will consider some 
examples of optical fields. 

At first, let us suppose that the optical field has a 
constant light intensity (which is for example the case 
of the ideal amplitude stabilized laser light with only 
phase fluctuations). Thus r = a and Pr(u) = eiau• 

Therefore cp(u) = exp -iau2, which is quite obvious, 
because if F(e) is constant, the compound Gaussian 
process becomes a pure Gaussian process. 

If now the optical field is created by a thermal 
source (natural light, or pseudothermal light), it is 
well known that the probability distribution of the 
light intensity is a-Ie-x/a and the characteristic function 
I/O - iau). Thus from Eq. (4.5) we obtain 

p(u) = 1 +.1 2 
2au 

and the probability distribution is 

1 _( I t 
p(x) = -- e 2 a) '''''. 

(2a)! 

(4.8) 

(4.9) 

Finally we will consider the superposition of 
the two previous fields. In this case the probability 
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FIG. 2. Probability distribution functions p(x) of the asymptotic 
shot noise for mixed light fields with some values of m, ratio of laser 
intensity to mean thermal intensity (m = 0, 1,2, 10,20, co). 

distribution of the light intensity is29 

Prey) = (m + 1) exp -[em + l)y + m] 

X Io[2(m(m + l)y)!], (4.10) 

where m = It! It, ratio of the mean light intensities of 
the laser and the thermal fields, and y is a reduced 
variable, ratio of the instantaneous intensity and the 
total mean intensity I z + It. The characteristic func
tion of this distribution is obtained by Fourier trans
formation 

qJr(u) = m + 1 exp (_ imu ), (4.11) 
m + 1 - iu m + 1 .- iu 

and therefore the characteristic function of the 
asymptotic shot noise is 

m + 1 (1 mu
2 

) 

<p(u) = m + 1 + u2/2 exp '2 m + 1 + u2/2 . (4.12) 

We have no simple explicit form of the Fourier 
transform of qJ(u), and thus we can also use for com
putation Eq. (4.7), where Prey) is given by Eq. (4.10). 
Computation of p(x) for many values of m have been 
realized and the results appear in Fig. 2. We have only 
considered the positive values of x, because p(x) is an 
even function. Evidently, for the limit cases m = ° and 

m -4- 00, we find Eq. (4.9) and the Gaussian distri
bution. 

Now let us consider two time instants t1 and t2 and 
calculate the probability distribution of the 2-dimen
sional random variable M(t1), M(t2)' In this case, Eq. 
(4.4) can be written 

<p[u1, U2] = E exp [-t(fllui + 2f12u1U2 + f22U~)], 
(4.13) 

where f ij is still given by Eq. (4.2). As previously,we 
will suppose that F(O) is stationary and that 

(4.14) 

where T is the average time constant of the random 
linear filter and tc the correlation time of F(O). As a 
consequence of this inequality, we have 

(4.15) 

where A is S:::~ E[R2(t)] dt and Fi = F(t
i
). Moreover, 

we can introduce T = It1 - t21 and write 

f12 = f(T) = F f"OO E[R(t)R(t - T)] dt 

= AFr R(T), ( 4.16) 

where r R( T) is a normalized correlation function 
(rR(O) = 1). 

Different cases depending on the parameter T can 
now be considered: 

(i) T« tc « T. 

Here we have evidently rR(T) = O,and F(t1) and 
F(t2) are practically independent. Therefore ,qJ [U1 , u2] 
can be written 

!p[u l' u2] = !pC u1)qJ( u2) 

= qJFGAUi)qJFGAU~)' ( 4.17) 

where qJF(V) is the characteristic function of F. Equa
tion (4.17) shows that the variables M(t1) and M(t2) 

are independent. 
(ii) T ~ te' 
We have always rR(T) = 0, but F1 and F2 are now 

correlated and have the characteristic function 
qJF(V1 , v2). From Eq. (4.13) we have 

<p[u 1 , u2] = <PFG AuL ~ Au~l (4.18) 

(iii) T« T « tc ' 

We have still rR(T) = 0, but F1 ~ F2 , and thus 

qJ[u1, u2] = <PFG A(ui + Ui)]. (4.19) 
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FIG. 3. A posteriori probability-distribution function pix) for 
m = 0 (thermal field) and some values of y (y = 0, I, 2,4, 10). The 
curves (a) and (b) are the a priori distribution functions for m = 0 
(thermal field) and m = 00 (ideal laser field). 

(iv) T c::= T. 
Now I'F(T) =;I: 0, Fl = F2, and we have 

(4.20) 

We must consider carefully the case (iii) for which 
q;(Ul, U2) is practically independent on T. The structure 
of rp(Ul' u2) given by Eq. (4.19) is characteristic of 
a 2-dimensional spherically invariant random vari
able.30- 32 The particular property of M(t l ) and M(t2), 

in this case, is that they are uncorrelated but noninde
pendent random variables. This appears clearly on Eq. 
(4.19). Therefore an interesting parameter describing 
the statistical dependence is the a posteriori probability 
distribution defined by 

P (x) = P(Xl, x2) (4.21) 
"'2 1 ()' P X2 

where P(Xl, x 2) is the Fourier transform of rp(Ul' U2) 
and P(X2) the a priori distribution of M(t) studied 
previously. 

We will calculate this distribution for a thermal 
optical field. In this case rpF(U) = 1/(1 - iu), and by 
supposing A = 1, we have a new random variable 

(X, Y) instead of (Ml , M 2) whose characteristic 
function is 

(4.22) 

and the Fourier transforms is 

p(X, y) = 1. Ko{[2(X2 + l)l~}, (4.23) 
1T 

where Ko is the zero-order modified Bessel function of 
the second kind. 

By using Eq. (4.9) we find the a posteriori proba
bility distribution 

(4.24) 

This probability distribution is represented on the 
Fig. 3 for some values of y. For large y, py(x) becomes 
approximately a Gaussian probability density, which 
can be seen by the asymptotic form of the Ko function. 

All these probability distributions show the differ
ence between compound and true Gaussian random 
functions which describe the fluctuations of the asymp
totic shot noise of thermo electrons and photoelectrons. 
Compound Gaussian stochastic processes have also 
many other interesting properties which will be 
studied in another paper. 

* Laboratoire associe au Centre National de la Recherche 
Scientifique. 
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The carrier space for internal degrees of freedom is assumed to be the 6-dimensional space spanned 
by generators L.,,). of local Lorentz transformations defined at each event of a Riemann space. Gauge 
potentials are introduced in this internal space which are like the Yang-Mills potentials except that they 

are related to parameters of the event connection r;" by a map which involves the L.K ).. as connecting 
quantities. The map is similar to the one which relates the Dirac spin space and spin connection to the 
Riemannian geometry of event space. An algebraic uniqueness condition is shown which is necessary 

and sufficient for the map to be one-to-one in a neighborhood of a solution r;" of the mapping equa
tions: The metric field is undetermined by a uniform scale transformation. If the gauge potentials have an 
internal holonomy group which is a subgroup of the Lorentz group and satisfy the free Yang-Mills 

equations, and if the uniqueness condition is satisfied, then the r;" committed by the inverse map 
automatically satisfy the free Einstein field equations, indicating that only the gravitational field is 
included in this mathematical framework. In an attempt to include nongravitational properties of 
matter, we have then considered internal holonomy groups larger than the Lorentz group. The part of 
the gauge potentials causing the enlargement is shown to form a current which may be interpreted as a 
source of the gravitational field. 

I. INTRODUCTION 

Some of the fields that appear in physical theories, 
such as the Dirac spinor field, do not have a direct 
geometric meaning, as they appear overlayed on the 
event space without influencing the event geometry in 
any way. This kind of field is in contrast to the gravi
tational field which has a direct geometrical conse
quence and, in fact, determines the Riemannian 
geometry of physical space. For this reason, the 
theory of gravitation is said to be a geometric theory. 
The electromagnetic potentials and gauge potentials 
(Yang-Mills potential1 and their generalizations2) are 
akin to the gravitational field as they have a similar 
direct geometrical role. The electromagnetic potentials 
provide the definition of equivalence of Dirac spinors, 
and the gauge potentials define the equivalence of 
particle multiplet fields at neighboring events. 

The mathematical definition of gauge potentials 
and gauge fields was given sometime prior to their 

use in physics in Konig,3 who introduced "parameters 
of a linear connection" which provide the definition 
of equivalence of internal vectors at neighboring 
points of a geometric manifold. This extension of the 
notion of equivalence to vector spaces which are 
independent of the underlying geometric manifold 
was viewed as a generalization of the parallel dis
placement of the tangent space of the event manifold. 
Konig's definition of parameters of a linear connec
tion for internal vectors is independent of the dimen
sion and structure of the vector space and includes 
the electromagnetic potentials, spin connection,4 and 
Yang-Mills potentials and their generalizations as 
special cases. These parameters of a linear connection 
are considered in the mathematical literature of 
modern differential geometry as a special case of 
fiber bundles with a linear connection.s 

Parameters of a linear connection for vectors other 
than event vectors were first considered in physical 
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I. INTRODUCTION 

Some of the fields that appear in physical theories, 
such as the Dirac spinor field, do not have a direct 
geometric meaning, as they appear overlayed on the 
event space without influencing the event geometry in 
any way. This kind of field is in contrast to the gravi
tational field which has a direct geometrical conse
quence and, in fact, determines the Riemannian 
geometry of physical space. For this reason, the 
theory of gravitation is said to be a geometric theory. 
The electromagnetic potentials and gauge potentials 
(Yang-Mills potential1 and their generalizations2) are 
akin to the gravitational field as they have a similar 
direct geometrical role. The electromagnetic potentials 
provide the definition of equivalence of Dirac spinors, 
and the gauge potentials define the equivalence of 
particle multiplet fields at neighboring events. 

The mathematical definition of gauge potentials 
and gauge fields was given sometime prior to their 

use in physics in Konig,3 who introduced "parameters 
of a linear connection" which provide the definition 
of equivalence of internal vectors at neighboring 
points of a geometric manifold. This extension of the 
notion of equivalence to vector spaces which are 
independent of the underlying geometric manifold 
was viewed as a generalization of the parallel dis
placement of the tangent space of the event manifold. 
Konig's definition of parameters of a linear connec
tion for internal vectors is independent of the dimen
sion and structure of the vector space and includes 
the electromagnetic potentials, spin connection,4 and 
Yang-Mills potentials and their generalizations as 
special cases. These parameters of a linear connection 
are considered in the mathematical literature of 
modern differential geometry as a special case of 
fiber bundles with a linear connection.s 

Parameters of a linear connection for vectors other 
than event vectors were first considered in physical 
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theories in investigations of the spinor calculus in a 
Riemann space4 and in Einstein and Mayer's version 
of the Klein-Kalutza theory.6 Later the Yang-Mills 
potentials were introduced in relation to isospin 
multiplet fields by a physical argument which may be 
stated as follows: At a given event, the bases of a 3-
dimensional linear vector space which is endowed 
with a metric tensor are indistinguishable to the 
extent of transformations which leave the metric 
tensor invariant. If by the choice of a basis at one 
event a preferred basis at another event were some
how selected, this would be in conflict with the concept 
of a local-field theory and, hence, the choice of bases 
should be arbitrary up to local orthogonal base 
transformations. When local base transformations are 
allowed, it then becomes necessary to introduce 
gauge potentials to obtain an invariant definition of 
the differential of an isovector, or what is the same, 
a definition of the equivalence of isovectors at neigh
boring events. Of course, the demand for consistency 
under local base transformations does not compel 
one to introduce nontrivial gauge potentials. For 
example, in the Minkowskian event space, parameters 
of a connection arise through the use of curvilinear 
coordinates, but they are of no basic interest. Like
wise, integrable gauge potentials could be employed in 
order to obtain a consistent transformation theory 
under local gauge transformations, but the gauge 
potentials and their concomittants would not have 
any physical significance. Physically significant gauge 
potentials may be introduced by simply identifying the 
field that provides the definition of -equivalence of 
internal vectors as the field which forms the substrata 
of physical quantities, which is the point of view of 
Loos7 and is the one which we take. 

One may consider the gauge field coupled to particle 
fields, as Yang and Mills have done, or consider the 
properties of the free field, as one does when investi
gating the electromagnetic field free of its sources. 
The free field, which we study here, satisfies non
linear field equations, which presents great difficulties 
in the quantization of the field and also in the 
investigation at the classical level. However, these 
free-field equations hold promise of admitting 
permanently localized regular solutions which could 
possibly avoid the point particle concept and obtain 
a field description of extended particles. This is the 
role of the field in physical theory envisioned by 
Weyl8: "The theory of fields has to explain why the 
field is granular in structure and why these energy 
knots preserve themselves permanently from energy 
and momentum in their passage to and fro," and 
"It is not the field that requires matter as its carrier, 

but matter is, on the contrary, an offspring of the 
field." 

Although the geometric nature of local gauge 
theory was recognized in the beginning,2 the use of 
already existing concepts and methods of differential 
geometry are usually not emphasized. Rather it seems 
that the fundamental geometric concept of equivalence 
of vectors is usually avoided even though the gauge 
potentials necessarily provide such a definition by virtue 
of their transformation law. Here, we follow Loos7.9 
and make free use of equivalence and related concepts 
and existing methods of differential geometry. The use 
of integrability conditions, which lead to the Einstein 
field equation in the theory of gravitation and the 
conservation of charge in electrodynamics, is also 
a powerful tool in the investigation of local gauge 
fields. The internal holonomy group of a gauge 
field10 has been a useful group theoretical concept in 
this investigation, while the gauge group has not been 
of as much importance. 

Here we are concerned with gauge potentials and 
fields defined on a Riemannian event space and 
acting in the 6-dimensional internal space formed 
by the generators of local Lorentz transformations.u 
This particular space is considered as a possible 
carrier space for internal degrees of freedom primarily 
because of the especially simple mathematical rela
tionship of the space and the gauge potentials to the 
event geometry, a relation which is similar to the one 
that exists between the Dirac spin space, spin connec
tion, and Riemannian event geometry.4 If the Rieman
nian geometry is given, a map exists such that the 
event metric field determines uniquely the gauge 
potentials acting in the internal space formed by the 
local generators of the event holonomy group,1l·12 
which in physically interesting cases is the homo
geneous Lorentz group. In this work, we consider 
the problem of the inverse map, where we take the 
gauge potentials as given fundamental fields and 
study the extent to which the gauge potentials then 
determine an underlying Riemannian event geometry, 
a problem similar to one which has been posed and 

. studied for the spin connection.13 The inverse map 
is studied for gauge potentials not satisfying field 
equations and also for gauge potentials satisfying 
free Yang-Mills equations. The case where the 
internal holonomy group of the gauge field is the 
Lorentz group or a subgroup thereof is considered 
first. Finally, we study a more general class of gauge 
fields which can have an internal holonomy group 
larger than the Lorentz group. 

The investigation is carried out at the classical level. 
In the case of the electromagnetic field, properties of 
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the classical field can be determined which also hold 
for the quantized field, e.g., the range of interaction. 
But it is not clear what conclusions with respect to 
the classical Yang-Mills field carryover to a quantized 
theory. Nevertheless, the difficulties are such that an 
investigation on the cIassicallevel appears to be useful 
and perhaps essential to further development and an 
eventual quantization of the theory. 

II. THE INTERNAL SPACE AND THE 
GEOMETRY OF GAUGE FIELDS 

A Riemannian geometry of event space is estab
lished by the parameters r~,,, fl, K, ••• = 0, 1,2,3, 
of a symmetric linear connection and a symmetric 
metric tensor g,,;. which satisfies 

(1) 

where V /J. denotes covariant differentiation with 
respect to r!I<' 

It is possible to associate in a natural way to each 
point in the event space a 6-dimensional space spanned 
by the generators of local Lorentz transformations.12 

This space is considered here as a possible carrier 
space for the internal degrees of freedom of elemen
tary particles.u In this section, we review how this 
space arises and how the gauge fields acting in the 
space are related to the Riemannian event geometry. 
In the context of the discussion, we introduce the 
geometrical concepts associated with the gauge fields 
which are relevant to this investigation. 

In a Riemann space, the generators of local Lorentz 
transformations Lil< -'(x/J.) , i,j,' .. = 1,2, ... ,6, are 
introduced as the 6-linearly independent solutions 
of the algebraic equation 

(2) 

Coordinate transformations generated by LiK A satis
fying (2) leave the metric tensor gKA invariant and, 
hence, the L i " -' generate local Lorentz transforma
tions. On account of (2) the L i " A satisfy the commuta
tion rules 

L PL" LPL"- kL" iK ip - iK ip - Ci1 kK' (3) 

where cdc are the structure constants of the Lorentz 
group satisfying the usual structural equations. In 
a Minkowski space and in a coordinate system, 
where gl<A is constant, the Lil<). may be taken as 
constant matrices, but in a Riemann space the solu
tions of (2) are functions of the coordinates. The 
generators are determined by (2) up to algebra base 
transformations 

(4) 

and similarity transformations with transformations 
belonging to the Lorentz group. Now, to each event 
of the Riemann space, we associate the 6-dimensional 
linear vector space of the Lie algebra of the local 
Lorentz group, which is spanned by the six linearly 
independent local generators Lil< ". 

Covariant differentiation of (2) with respect to event 
indices only and use of the covariant constancy of the 
metric tensor yield 

(5) 

where eVil indicates the covariant differentiation is 
restricted to event indices. Equation (5) is satisfied if 
ev ilL;,," is a linear combination of the Lil<'" say 

(6) 

Under the change of algebra base (4), the parameters 
rlli i introduced in (6) are specified to transform as 

r ll/ = A!,fll/Af - A~,oIlAr. (7) 

where A;,A~' = o~. By (6) and (7), we have extended 
covariant differentiation to the algebra indices 
i,j, .... We may then write (6) in the form 

VIlLiK
A = 0, (8) 

where now V /J. denotes covariant differentiation with 
respect to both event and algebra indices. Similarly 
to the geometric meaning of the event connection, 
the parameters r /J./ provide a definition of equivalence 
for quantities belonging to the 6-dimensional algebra 
space. That is, if for the vector rl(x") in the Lorentz 
algebra space at the event x", 

(9) 

then the vectors 'fji(X") and 'fji(XI< + dxl<) are said to 
be equivalent. On account of the transformation law 
(7), the definition of equivalence and the covariant 
constancy of L i " A are invariant properties under local 
algebra base transformations. 

From the parameters r /J. ii we construct, in perfect 
analogy to the Riemann tensor, the geometric 
quantity 

rp"v/ = o"f./ - ovr,,/ - f"lfv/ + rvlr,,/, (10) 

which, under the base transformation A~" transforms 
as 

A.. j' - Ai A.. jAi' 
'f"JJvi' - i''+'llvi i . (11) 

In view of their geometric meaning, the parameters of 
connection r "ii and the field rp"./ can be regarded as 
generalized Yang-Mills potentials and Yang-Mills 
field, and we adopt the terminology of gauge poten
tials for f,,/ and gauge field for rp"v/, keeping in 
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mind that these fields are related to the Riemannian 
event geometry, a property which is not shared by 
the Yang-Mills field. 

Covariant differentiation of (8) and alternation of 
the covariant derivatives yield the integrability con
dition 

R PL). - L PR ). = -"- 'L.). (12) 
JlVK ip iK JlVp 't'Jl'.i1, JK' 

which the gauge field and the Riemann tensor must 
satisfy. Since a Riemann space is a metric space, the 
Riemann tensor is anti-self-adjoint in its last two 
indices and, hence, may be represented as a linear 
combination of L;K A: 

RiJV'/ = BiJ/Lk /. (13) 

Inserting this expression in (12) yields 

B k(L P L). I P L A) - - '" iL i. (14) 
~v kK ip - "iK kp - 'I'll vi jK' 

With the commutation relations (3) and the linear 
independence of the Li/' (14) shows that 

(15) 

From (15), we see that the gauge field can be expressed 
as a linear combination of the structure constants 
and, hence, lies in the Lie algebra of local Lorentz 
transformations. According to (13) and (15), the 
Riemann tensor and the gauge fields are related to 
each other. In fact, the Lie algebra of the event 
holonomy group is spanned by the Riemann tensor 
and its covariant derivatives, and the gauge field and 
its covariant derivatives span a representation of the 
Lie algebra of the internal holonomy group which is 
just the adjoint representation of the Lie algebra of 
the event holonomy group. A full discussion of 
holonomy groups is given in Ref. 10. In a Riemann 
space the event holonomy group is contained in the 
Lorentz group, but may be a subgroup thereof. How
ever, in physical applications where matter is present, 
the event holonomy group should be the full Lorentz 
group, since in such a simple situation as the spheri
cally-symmetric gravitational field of an isolated 
particle, the event holonomy group has six parameters. 
Hence, we suppose that the event holonomy group is 
the Lorentz group and that the internal space is the 
6-dimensional space spanned by the generators of 
local Lorentz transformations. 

The symmetric tensor gij is defined by 

gii(X") = Cik!(X")cjNx"), (16) 

and may be used as a metric tensor in the internal 
space. Since the generators L i ,,'< are not constant then, 
according to (4), the structure constants need not be 
numerically constant as is indicated in (16). However, 

since L i ,,'< are covariant constant, we have 

Y~ciik = 0 (17) 

with respect to the gauge potentials riJ/' From (16) 
and (17) it follows that 

Y~gij = O. (18) 

The tensor gu is sometimes called the Cartan metric. 
Owing to the semisimplicity of the Lorentz group, gij 

is nonsingular and because of noncompactness it is 
indefinite. Since go is nonsingular, it may be used to 
raise and lower indices and to define the norm of 
internal vectors. With gij as metric tensor, the 
internal space is a metric space, but with an indefinite 
metric with signature (- - - + + +) which may be 
verified by direct computation using the structure 
constants. 

If the parameters of the Riemann connection are 
given, we may solve (8) for r ~ij in terms of Li/ and 
r ,,/. Multiplying (6) by LkA' and contraction of the 
event indices yield 

Since 
L "en L ;. - r iL "L .< 

kA v ~ i" - jli kA i,,· (19) 

Lk,/L j ;." = Agld , (20) 

where A is a nonvanishing real number, we can write 
(19) in the form 

r i = A-1gkjL Key L . .< (21) 
/li k'< /l 21< • 

This shows that the gauge potentials (and, conse
quently, the gauge field) are determined uniquely by 
the Riemannian event connection. 

There is a close similarity between the construction 
described here which gives the gauge potentials and 
the Lie algebra space of the local Lorentz group as an 
internal space and the construction by which the 
Dirac spin space and spin connection arise. Both the 
Dirac operators and anti-self-adjoint generators L i ,,;' 

are algebraically related to the event metric tensor. 
The spin connection, which defines equivalence of 
spinors at neighboring events, is defined through the 
requirement that the Dirac operators be covariant 
constant when covariant differentiation is extended 
to spinor indices; the gauge potentials, which provide 
the definition of equivalence at neighboring events 
of vectors in the algebra space of the Lorentz group, 
arise from the requirement that the generators of the 
local Lorentz group be covariant constant when 
covariant differentiation is extended to algebra indices. 

III. GAUGE POTENTIALS AS FUNDAMENTAL 
FIELDS 

If a gauge field is considered as a fundamental 
field with which the properties of matter are to be 
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described, it becomes of interest to investigate the 
extent to which a gauge field can determine the under
lying Riemannian geometry. The main sUbject of 
this paper is the investigation of this "inverse prob
lem." That is, we suppose a gauge field is a priori 
given and investigate the extent to which a Riemannian 
geometry is committed, when the relations between 
gauge potentials and the Riemannian geometry dis
cussed in Sec. II are invoked. In particular, the 
uniqueness of a Riemannian geometry associated 
with a gauge field is considered. 

The gauge field considered in this section could be 
restricted by some dynamical statement, for instance, 
by a field equation of the Yang-Mills type, but we 
shall not do so at this point, since the problem of 
uniqueness (and also of existence) can be investigated 
without specifying the dynamics of the field. However, 
we impose the algebraic requirement that the field 
and all of its covariant derivatives are contained in 
the Lie algebra of the Lorentz group. The holonomy 
group is then the Lorentz group or a subgroup 
thereof. We see that this insures that the gravitational 
field can be accounted for. In the internal space it is 
possible to have real gauge potentials which produce 
an internal holonomy group as large as the real linear 
group in six dimensions. Later, we consider an 
"enlargement" of the internal holonomy group 
beyond the Lorentz group in an attempt to introduce 
nongravitational properties of matter. 

The starting point for the investigation of the 
inverse problem is a 4-dimensional geometric mani
fold as the event space with a 6-dimensional linear 
vector space at each event. The geometric structure 
of the event space is not completely specified initially, 
but we endow the event space with the Lorentz 
group structure constant field cil satisfying the 
usual structural relations. As before, we use the 
Cartan metric for the internal metric tensor, and with 
gii the internal space becomes a metric space. We 
note that introducing the field cil provides more 
geometrical structure than would be obtained by 
having just an internal metric at each event. This is 
evident because the field c.l is invariant under a 
6-dimensional representation of the Lorentz group, 
while the internal metric field selects at each event a 
much larger group, the 15-dimensional group of 
local orthogonal transformations. 

From this starting point, our motivation for intro
ducing the gauge potentials is simply to provide the 
definition of equivalence of internal vectors at neigh
boring events, or, what is the same, the definition of 
the covariant derivative of internal quantities. The 
gauge potentials are restricted by the requirement 

that the structure constants are covariant constant 
as expressed by (17) and hence, as before, the Cartan 
metric is covariant constant. The first integrability 
condition for (18) is14 

CPIlV(ik) = 0, (22) 

which shows that gauge-field components belonging 
to gauge potentials satisfying (18) are anti-self-adjoint 
with respect to the internal metric. 

A stronger integrability condition is obtained by 
covariant differentiation and alternation of (17). We 
obtain 

(23) 

Multiplication of (23) by the structure constants, 
transvection over internal indices, and use of the 
definition of the Cartan metric leads to 

,,/..k_ ,,/..lmi k 
'l'llvi - -'I'llvi e I emi • (24) 

It follows that the gauge field is a linear combination 
of the structure constants 

where 
,,/.. m _ B kC m 
'l'IlV; - - IlV ki , 

B k _,,/.. il k 
IlV - 'l'IlV eil • 

(25) 

(26) 

Equation (25) shows that gauge-field components 
belonging to gauge potentials satisfying (I7) are 
contained in the adjoint representation of the genera
tors of local Lorentz transformations, guaranteeing 
that the internal holonomy group of the gauge 
potentials are a subgroup of the Lorentz group. 

By a suitable choice of internal base we may make 
Ci/ numerically constant; this places no restriction 
on the structure constant field, but merely fixes the 
internal base up to the adjoint representation of a 
local Lorentz transformation. In such an internal base, 
(17) acquires the form 

- r ,,/C1i
k - r ,,/c} + r ,}ci / = O. (27) 

Following the same method as was used to show that 
a solution of (23) is a linear combination of the 
structure constants, we find 

(28) 
with 

(29) 

It is now clear how to prescribe the gauge potentials 
in order to obtain an internal holonomy group 
which is a subgroup of the Lorentz group. In the 
special base where e./ are constants, one takes gauge 
potentials as linear combinations of the structure 
constants, as in (28), with arbitrary coefficient fields 
b~. By this prescription, we include all possible gauge 
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potentials whose internal holonomy group is con
tained in the Lorentz group. 

Proceeding with the statement of the inverse prob
lem, we note that the generators of local Lorentz 
transformations, related to the given structure
constant field by (3), are now considered as unknown 
fields. The map linking the internal space with 
the event space is determined, as before, by (8) and 
provides a differential equation which the LiK J. must 
satisfy. Writing out (8), we have 

0I'Li/ - r~KLi/ + r;pLi/ - rl'/L;/ = 0, (30) 

where the gauge potentials r 1'/ are now the given 
fields and we seek the even t connection r 1''' J. as a 
solution of (30). The generators LiK J. cannot be 
chosen freely and appear as part of the solution. This 
can be seen as follows: Suppose the generator fields 
L iK }. satisfying (3) are prescribed. Then, from Eq. 
(2), we may determine the metric field that makes 
these generators anti-self-adjoint. Suppose there are 
two solutions of (2), say hKJ. and gKJ.' Then it follows 
from (2) that 

gl'}.Li/g.K + L,/ = 0, 

hl'}.L,/h." + Li/ = O. 

Subtracting these two equations, we obtain 

hl'agl'}.Li/ - LilT }.h,,}.gI'V = O. (31) 

Since the fundamental representation of the genera
tors of Lorentz transformations form an irreducible 
set, Schur's lemmaI5 applies and the solution of (31) 
has the form 

or 

hila = P,g"a' 

where p, is an arbitrary real number. Hence, the speci
fication of the generators L iK }. determines the event 
metric field up to an arbitrary numerical factor. IS 

Hence, if the L iK ;' are chosen, the metric field calcu
lated with the aid of (2) and the metric tensor related 
to the solution r;" of (30) through the Christoffel 
formula would not necessarily be in agreement. 

In order to relate to the theory of general relativity, 
we shall consider solutions r;", Li/ of (30) which 
give a Riemannian geometry. That is, we only admit 
solutions which satisfy (1) and 

(32) 

The system of Eqs. (I)-(3), (30), and (32) determine 
the inverse map of gauge potentials restricted by (28) 
to the symmetric and metric linear connection of 
event space. 

IV. UNIQUENESS OF SOLUTIONS OF THE 
INVERSE MAP 

The uniqueness of the solutions is studied by assum
ing the existence of a solution and then investigating 
whether the governing equations admit solutions 
infinitesimally different from the assumed solution. 
It is clear from the outset that this method only 
exhibits continuous families of solutions and cannot 
reveal discretely different solutions. Let us assume 
that r;", LiK?" and g,,1< satisfy the governing system 
of equations and then consider the fields 

r~! = r;/( + bf;", 

L;,,;' = Li,,;' + bLi/' 
(33) 

infinitesimally different from the assumed solutions. 
In order that the primed objects also form a solution 
for fixed f "ii and cil, the infinitesimal variations 
bLi ,,;' and bf;" must satisfy 

[bLi' L j ] + [L" bL j ] = c}bLk , (34) 

bL,,."gaJ. + Li,."oga). + oL,/ga" + Li/bga" = 0, 

(35) 

o"oLi - [er" , bL;] - [15 efl" Li ] = fl'/bL;, (36) 

Vp.bg,,). - (jr~"gaJ. - gI<O'br~J. = 0, (37) 

bf[I'''/ = 0, (38) 

where these equations are obtained by retaining only 
terms of first degree in the variations in Eqs. (1)-(3), 
(30), and (32). We have introduced matrix notation 
with L" for Li'/, and efp.' for r;". 

Equation (34) is satisfied only if bLi can be expressed 
in the form 

bLi = [K, L~], (39) 

for an arbitrary infinitesimal operator K. 
Use of (39) in Eq. (36) for fixed r,,/ yields 

VI'[K, Li ] = [15 erl" LiJ, (40) 

where VI' means covariant differentiation with respect 
to all indices. Since Li is covariant constant, (40) may 
be written in the form 

[VI'K - 15 erJl , L;] = 0. (41) 

The Li form an irreducible set of matrices and, 
hence, by Schur's lemma, 

of;" = V I'K/ - al'0:' (42) 

where al' is an arbitrary infinitesimal vector field. 
Thus, if f~" is a solution of (36), then r~K + or~", 
with Or;K given by (42), is also a solution. According 
to (39), (35) will be satisfied only if 

og,,;. = K"O'g,,;. + K;.tlgtl", (43) 
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Using the variations bg/lv and br~v in (37) yields 

Hence, the multiple of the identity in (42) is excluded 
and, consequently, the allowable variation in the 
parameters of the event connection is given by 

(44) 

where K,/ is arbitrary. 
To this point, we have shown that the system of 

equations excluding (38) which determines the map
ping of the gauge potentials to the parameters of the 
event connection admits, for fixed c;/ and r /l/' a 
continuous family of solutions r~" + of~" generated 
from a given solution by an operator K" A, which is 
arbitrary except for whatever smoothness restrictions 
one might wish to impose. The form of of;" displayed 
in Eq. (44) shows that the family of connections 
f;" + bf;" is not the result of a coordinate trans
formation and must be interpreted as geometrically 
different connections. Hence, we see that without 
invoking the torsion freeness of the event space, the 
map from the gauge potentials to the event connection 
is highly nonunique. If the event space is assumed to 
be torsionless, then from (3&) it follows that 

(45) 

Equation (45) is a very strong restriction on K" A and 
only in very special cases will nontrivial solutions 
exist. 

Covariant differentiation of (45) and alternation 
of covariant indices yields 

(46) 

Higher integrability conditions are satisfied identically, 
so we need consider only (46). Equation (46) is the 
same algebraic equation encountered by Loos13 in the 
study of the mapping of parameters of the spin 
connection onto the parameters of a Riemannian 
event connection. It may be written as the following 
system of linear algebraic equations: 

(47) 

From the form of the matrix of coefficients M we 
see that the rank is not greater than 15; so there is at 
least one solution, namely, 

(48) 

It is evident from (39) that for K,/ given by (48) the 
generators are invariant. Inserting (48) in the differ
ential equation (45) yields 

b;o/la -- b;o"a == o. 
This equation implies that a is a constant. Then, 
according to (44), of;" vanishes. The effect of the 
variation generated by (48) with constant a is to 
multiply the metric tensor by a constant factor and 
thereby represents a nonuniqueness in the inverse 
map which leaves the scale of the metric field undeter
mined. Combining this result with the results of Sec. II 
we have: If the rank of M has the maximum value 15, 
the map between gauge potentials f ,j and the param
eters of the event connection f;" is one-to-one in a 
neighborhood of f;", and the metric field is determined 
up to a uniform scale transformation. Our method, 
which is by infinitesimal variation of an assumed 
solution, does not rule out the possibility of discretely 
different Riemannian geometries corresponding to the 
same gauge potentials. 

LOOS13 has shown that the identities satisfied by 
the Riemann tensor do not force the rank of M to be 
less than 15 and, hence, cases where this does occur 
should be considered exceptional. An example of such 
an exceptional case is the Schwarzschild metricP 
For the Schwarzschild metric, use of nonvanishing 
~ompo~ents of the Riemann tensor in (47) shows by 
mspectlOn that the rank of M is 12 or less and that 
generators of the form 

K/ == k"o;, (49) 

with no sum on K and k", an arbitrary vector field, 
are a solution of (46). In order for solutions, in 
addition to (49) to exist, it is necessary for the sub
determinant obtained by deleting the four rows and 
columns of zeros in M to vanish in a region of event 
spaces. This does not occur for components of the 
Riemann tensor computed from the Schwarzschild 
metric. This example suggests that the mapping 
between gauge potentials and parameters of the event 
connection fails to be locally one-to-one only for 
fields of high symmetry. For less symmetry, for ex
ample in a scattering situation, or if particle internal 
structure would be represented, we would expect the 
map to be one-to-one. 

We have seen thaJ a necessary condition for the 
existence of solutions of the inverse map which 
differ by more than a uniform scale transformation 
of the metric field is that the rank of the matrix M 
in (47) be less than 15. A condition which is sufficient 
for the existence of a nonuniqueness in the inverse 
mapping is demonstrated as follows. Let the generator 
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K,/ be of the form 

K,/ = 'V.,vA
• 

Substitution of (50) in (45) yields 

'V[,,'V.,]v). = O. 
But 

(50) 

(51) 

'V[jt'V,,]vA = tRjt,,/v'. (52) 

Hence, if the Riemann tensor has eigenvectors with 
zero eigenvalues, there are solutions of (45) of the 
form (50). These solutions represent a nonuniqueness 
in the mapping from the gauge potentials to the 
Riemannian geometry. If the Riemann tensor has a 
zero eigenvalue, the rank of M is less than 15, in 
agreement with the above integrability conditions. 

It is perhaps of interest to examine the consequence 
of deleting the metric condition (1) from the mapping 
equations. According to (2) and (8) we must have 

Li/'V .g).jt + Li/'V vg)." = O. (53) 

A metric field subject to the condition of the Weyl 
geometry, namely, 

'Vvg;'jt = Qvg).jt' (54) 

satisfies (53) and is not excluded by (2). 
The integrability condition (12) of (8) admits a 

curvature tensor of the form 

Rjtv/ = *Bjt/Li/ + V'["Qv]b~, (55) 

which is compatible with (54). The uniqueness proof 
then goes through exactly as before, showing that we 
obtain the same uniqueness statements for the 
mapping between gauge potentials and a Weyl 
geometry as obtained for the Riemannian geometry. 

V. YANG-MILLS AND EINSTEIN FREE-FIELD 
EQUATIONS 

The gauge potentials considered thus far in the 
inverse problem have not been assumed to satisfy 
field equations; they were restricted only by algebraic 
conditions which assured that the holonomy group of 
the gauge potentials would be a subgroup of the 
Lorentz group. Let us now go on to investigate gauge 
fields which are subject to field equations, while 
maintaining the link between the gauge field and the 
event geometry which is established by requiring the 
covariant constancy of the generators of local Lorentz 
transformations. Only free gauge fields are considered, 
as we do not couple the gauge fields to particle current 
densities. For free fields the possible Lagrangians are 
scalar densities constructed from the gauge potentials. 
We consider the simplest Lagrangian, namely, 

(56) 

where 

(57) 

Under a coordinate transformation A1', g transforms 
according to 

(58) 

and thus provides the density character to the 
Lagrangian. The gauge field equation is obtained 
from the postulate of stationary action under arbitrary 
variation of the gauge potentials for a fixed metric 
field. For variations which vanish outside a finite 
region of event space, we obtain the field equation 

a"g4>"\; - g(r"ik4>"V - 4>"?r"k;) = o. (59) 

However, the left-hand side of (59) is not a quantity 
unless the event connection is symmetric. Making the 
independent assumption that the event connection is 
symmetric, we obtain a field equation which trans
forms like a geometric quantity18 without further 
a priori assumptions about the metric properties of 
the event space. 

Originally, the Yang-Mills equations were defined 
on a Minkowskian event space, but here we are 
interested in the case where the event space is not 
flat. The event metric tensor appears in (59) through 
g and the contravariant indices of 4>")./ and, hence, 
the metric tensor and gauge potentials are inter
dependent even without having the map between 
gauge potentials and parameters of the event 
connection. 

To establish the inverse map, we proceed as before 
by requiring that the generators L i ,,). be covariant 
constant as expressed by (8). For a Riemann space 
the integrability conditions for (8) imply that (13) and 
(15) are satisfied. With (13) and (15), using the 
covariant constancy of L ilc )., we see from the field 
equation (59) that 

V'vR// = 0, 

which for a Riemann space implies 

V';.Rllv/ = 0. 

(60) 

(61) 

Transvection of the Bianchi identity satisfied by the 
Riemann tensor and use of (61) give, for the Ricci 
tensor, 

V'[VRlllK = 0. 

Equation (61) implies the weaker condition 

V';.R/ = 0, 

while contraction of (62) yields 

V'vR = 0, 

(62) 

(63) 

(64) 
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where R is the scalar curvature. So we see that when 
the inverse map between the gauge potentials and the 
parameters of the event connection is invoked, the 
field equations for the gauge potentials imply that 
Eqs. (60)-(64) hold for the Riemann tensor, the 
Ricci tensor, and the scalar curvature, respectively. 
Hence, the gauge-field equation together with the 
inverse map imply that the event space is a space of 
constant curvature. But, a Riemann space of constant 
scalar curvature need not be an Einstein space.12 How
ever, if we require that the inverse map determines 
the event geometry uniquely except for a constant 
scale transformation of the metric field, then the only 
solutions of (62) are 

Rllv = bgllv , 

where b is an arbitrary scalar factor.I9 Hence, param
eters of the event connection, which are in one-to-one 
correspondence to gauge potentials which satisfy the 
free Yang-Mills equations, are automatically solu
tions of the empty-space Einstein equations with 
arbitrary cosmological constant. But there are solu
tions of the Einstein equation for empty space which 
do not satisfy the subsidiary requirement that the 
inverse map have a unique solution. the Schwarzschild 
metric providing stich an example. So the Yang-Mills 
type field equation together with the subsidiary require
ment of uniqueness admits a smaller set of solutions 
than the Einstein field equation. 

VI. ENLARGEMENT OF THE HOLONOMY 
GROUP 

If one insists that solutions of the inverse map be 
unique, then it appears that, to go beyond the gravita
tional theory in this mathematical framework, we 
must consider gauge potentials of a more general kind. 
At the same time, we wish to maintain a correspond
ence to the Riemannian geometry so that gravitational 
phenomena can be included. To accomplish this, we 
allow gauge potentials having a semisimple holonomy 
group which is larger than the Lorentz group. Then 
the map in the present form can no longer be main
tained. That is, parameters of a Riemannian event 
connection such that the generators of local Lorentz 
transformation are covariant constant do not exist if 
A. ) and their covariant derivatives are not contained 
't'p,Vl 

in the Lie algebra r of the Lorentz group. 
Let us again consider the Lagrangian density (56) 

and the field equation (59) for a symmetric event 
connection. We supplement the action principle with 
the modified mapping equation 

en L A - *r iL ;. v Jl iK - J,ti jK' (65) 

where *r 11/ is that part of the gauge potential which 
belongs to L in a canonical base system, i.e., in an 
internal base and an algebra base such that the total 
gauge potentials are contained in the Lie algebra of 
the internal holonomy group.20 This insures that in 
any internal base the holonomy group of *r 11/ is a 
subgroup of the Lorentz group. In the canonical base 
system 

r i - *r i + Q i (66) Ili - Ili pi' 

where Qlli
j is not contained in L. When the gauge 

potentials are expressed in the form (66), the gauge 
field decomposes as 

(67) 
where 

cfo:v = all *rv - av *rll - [*rll , *rv], (68) 

1f/lv = allQv - a.QIl 

- [QIl' Qvl - [*rll , Qvl - [Qp. *rv]' (69) 

The gauge field cfo:v is contained in rand 1fllv is not. 
The map between gauge potentials and the event 
geometry is now established through 

:l L A *rp L A + *rA L p *r i L A - 0 fJ 11 il< - Ill< ip J.Lp il< - Ili il< - • 

(70) 

The relation between the Riemann tensor and the 
part of the gauge field which belongs to r is shown by 

R A-*BiL I.. 
JlVI< - IlV I", 

*,,1. j _ *B k i 'l'llvi - - IlV Cki • 

(71) 

(72) 

Invoking a unified action principle for the total 
gauge field and using the same Lagrangian density 
(56) as before, we see that the field equation is again 
(59). Decomposing the gauge potentials and field into 
Lorentzian and non-Lorentzian parts, which is under
stood to be done in a canonical base, we obtain from 
(59) the field equation 

(73) 
where 

JA = -'V
Il

1fIlA - [QJl, *cfoIlA] (74) 

and *\7 Jl and 'V Jl are covariant derivatives with respect 
to event indices and gauge ,covariant with respect to 
*r 11/ and the total gauge potential r 11/' Equation 
(73) implies that 

\7 VR"A'/ = J Ild 

holds rather than (61), where 

(75) 

J IlKA = j~LiKA' (76) 

. iJ k (77) Jilt = Cik Ili' 

Using Bianchi's identity and (75), we obtain, after 
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contraction, 
(78) 

Equation (78) shows that the event space is not empty 
and, in this sense, the enlargement of the internal 
holonomy group results in a source of the gravitational 
field. If J1j vanishes, then Jp.1< '- also vanishes, the 
internal holonomy group is the Lorentz group or a 
subgroup thereof and the parameters of the event 
connection satisfy the Einstein field equation for an 
empty space. 

It is natural to identify the Lorentzian part of the 
gauge potentials with the gravitational field and 
the non-Lorentzian part with matter which acts as the 
source of the gravitational field. Regular localized 
solutions of (73), if they exist, could perhaps be inter
preted as a classical field description of an extended 
particle with internal structure. 

If a free-gauge field has an internal holonomy group 
which is a direct product of two semisimple groups, 
then the field can be decomposed into two non
interacting fields.1° That is, the gauge field can be 
decomposed into parts that satisfy uncoupled field 
equations. If the gravitational part of the internal 
holonomy group is the adjoint representation of the 
full Lorentz group, then the only possible enlarge
ment that gives an enlarged group which is a direct 
product of semisimple groups is obtained by adding a 
multiple of the identity to the gravitational part of the 
gauge potentials, i.e., 

fp. = *fp. + Qp.I. (79) 

We then obtain the gauge field 

4>p.v = 4>:v + (Op.Qv - ovQp.)I. (80) 

Inserting (79) and (80) in (59) yields 

op.g *4>p.v - g[*f p.' 4>P.V] + op.g(op.Qv - oVQP.)I = O. 

The terms involving *4>p.v and QV belong to disjoint 
algebras, so we must have separately 

op.g *4>p.v - g[*f p.' *4>P.V] = 0, (81) 

op.g(op.Qv - oVQP.) = O. (82) 

We have shown that if the mapping to the Riemannian 
geometry is unique up to uniform scale transforma
tion, the field equation (81) implies the free-gravita
tional field equation 

Rp.v = bgp.v' (83) 

But a free-gravitational field is in conflict with the 
presence of another field which is the carrier of energy 
and momentum. Hence, in the case of a unique 
mapping we must regard the enlargement of the 

internal holonomy group by the direct product of a 
semisimple group with the adjoint representation of 
the full Lorentz group as physically untenable. 

VII. DISCUSSION 

The central ideas behind this investigation are that 
Yang-Mills-type gauge potentials should be funda
mental in a field theory of elementary particles and 
that internal and space-time degrees of freedom 
should be somehow linked together. In a Riemannian 
event space, the Pauli spin space, the Dirac spin 
space, and the space spanned by generators of local 
Lorentz transformations (Lie algebra 1:.), all provide 
mathematical frameworks where these ideas can be 
studied. The parameters of linear connection for 
vectors in the respective spaces all transform under 
local base transformations in the same way as the 
Yang-Mills potentials in isospin space and can be 
regarded as gauge potentials. Here the investigation 
has been confined to gauge potentials acting in L. 
This linear vector space and the gauge potentials 
acting in it arise in much the same way as the Dirac 
spin space and spin connection arise from a Rieman
nian event space. However, this mathematical struc
ture and its application in physical theory have not 
been specifically investigated as they have in the case 
of the Dirac spin space. 

If gauge potentials in the algebra space are con
sidered fundamental, then it is natural to inquire into 
the extent to which the gauge potentials commit the 
underlying Riemannian geometry. The present investi
gation has been concerned mainly with this question. 
The generators of local Lorentz transformations 
Lil< '-(xp.) provide the connecting link between internal 
and space-time degrees of freedom. When the 
Lil< "(XII) are required to be covariant constant with 
respect to event and algebra indices, a very close 
correspondence is established between the gauge 
potentials and the parameters of the event connec
tion. In fact, we have shown that the correspondence 
is almost always one-to-one in a neighborhood of 
parameters of the event connection f;" which satisfy 
the mapping equations, with the metric field remaining 
undetermined only by a uniform scale transformation. 
An algebraic condition is displayed which if satisfied 
insures such a locally one-to-one map. These results 
hold independently of whether the gauge potentials 
satisfy field equations. However, if the gauge poten
tials are subject to an algebraic restriction which 
insures that the internal holonomy group of the 
gauge potentials is the Lorentz group or a subgroup 
thereof, if the gauge potentials satisfy field equations 
of the free Yang-Mills type, and if the map is locally 
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one-to-one, then it follows that the parameters of the 
event connection necessarily satisfy the Einstein 
equations for empty space with arbitrary cosmological 
constant.1S 

This result suggested that gauge potentials of this 
class have only to do with the gravitational field. To 
introduce nongravitational fields, one could introduce 
particle fields which would appear as a source in the 
Yang-Mills field equation, but which would not have 
any direct geometric meaning. In this case, one can 
also establish a locally one-to-one map between 
gauge potentials and parameters of the event connec
tion. Then the Yang-Mills equations no longer imply 
an empty Einstein space. However, it seemed appro
priate to the spirit of this investigation to try to intro
duce nongravitational fields without introducing 
particle fields of a nongeometrical nature. It is shown 
that it is possible to do this by considering a more 
general class of gauge potential. When gauge potentials 
with internal holonomy groups not contained in the 
Lorentz group are allowed, the gauge potentials 
separate into a part contained in C and a part not in L 
Invoking the free Yang-Mills equations for the total 
gauge potentials, the field equation splits into a 
Lorentzian part and a non-Lorentzian part with the 
split being invariant iflocal gauge transformations are 
restricted to elements of the Lorentz group. The 
non-Lorentzian part contributes to a current which 
acts as a source of the Lorentzian part of the gauge 
potentials, which we identify as the gravitational field. 
When a modified map between gauge potentials and 
parameters of a Riemannian event connection is 
invoked, the Yang-Mills equations with "source" 
imply that the Riemann curvature tensor satisfies the 
Yang-Mills type of equation 

V RI' ?-J ? 
J.L v Ie - VK' 

with a tensor source JVI(;" A nonvanishing current 
implies an event space of variable scalar curvature 
and, hence, that the Einstein field equations for empty 
space are not satisfied. If one acknowledges only the 
event geometry, this is merely a theory with a metric 
field plus a nongeometrical tensor field. However, 
there is a geometric unification if one acknowledges 

the gauge potentials acting in the internal space and 
their relation to the Riemann geometry. Moreover, 
the Yang-Mills equation for gauge potentials with 
an enlarged internal holonomy group is not equivalent 
to considering only the event space with a metric field 
plus a tensor field JVI(?' The theory including the 
gauge potentials contains additional fields and 
differential relations which, however, have not been 
considered here. 
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If parameters of a spin connection have a holonomy group which is the Lorentz group or a subgroup 
thereof and if a certain algebraic restriction involving the Riemann tensor, say :R, is satisfied, then there 
is a one-to-one relation between the spin connection sr Ilab and parameters of a Riemannian event con
nection r ILK'", in a neighborhood of an assumed solution of the equations which establish the correspond
ence [see H. G. Loos, Ann. Phys. 25,91 (1963)1. We have, by the use of anholonomic bases in the 
Riemann space, simplified the equations which determine the map and have shown that if the algebraic 
condition :R is satisfied, a one-to-one correspondence holds also in the large. The same method, involving 
anholonomic bases, has also been used to study the map between gauge potentials acting in the internal 
space formed by generators of local Lorentz transformations and parameters of connection of a Riemann
ian event space. An analogous theorem is proved which asserts that if:R is satisfied,then the correspond
ence between the gauge potential and the parameters of the event connection is one-to-one. 

I. INTRODUCTION which they determine when the above maps are 
One may introduce parameters of a linear connec- invoked. LOOS4 has posed and studied this so-called 

tion (the spin connection) for objects represented in inverse problem, where he has considered the spin 
the spin space, but only in a manner which is com- connection as a fundamental field and then investi
patible with the quadratic decomposition of the gated the extent to which a given, fixed spin connec
metric field by the Dirac operators. One way in tion determines the local Dirac operator field Y K(xll ) 

which this may be done is to require that the Dirac and the associated Riemannian event geometry. An 
operators be covariant constant with respect to both investigation by Peres5 of the Pauli and Dirac spin 
spinor and event indices.! In this theory, the Dirac connections in a curved space has bearing on this 
operators play the role of "connecting quantities" problem, but from a different point of view. The 
(not to be confused with parameters of a linear con- analogous problem, where gauge potentials acting 
nection) by virtue of their having both spin or and in L(gK)) are assumed given, has also been studied.6 

event indices. Their existence and the requirement of In Ref. 4, algebraic conditions involving the Riemann 
covariant constancy forces certain relationships be- tensor are shown, which, if satisfied, insure that the 
tween the spin space and the tangent space to the correspondence between parameters of the spin 
event space. Similar structures also exist for the Pauli connection and event connection is one-to-one in a 
spin space and the space formed by the generators neighborhood of an assumed solution of the mapping 
of local Lorentz transformations.2.3 The Pauli opera- equations (locally one-to-one). The Riemannian 
tors O"K(xll ) "connect" the Pauli spin space and the metric remains undetermined only by a uniform 
Riemannian event space and the Pauli spin connection scale transformation. In Ref. 6, the uniqueness of 
is introduced and its relationship to the Riemannian the correspondence between the gauge potentials and 
geometry established by requiring that the Pauli parameters of the event connection was studied and 
operators be covariant constant. The six linearly- the same algebraic condition was shown also to 
independent local generators Li/(Xll ), i,j,'" = 1, guarantee a locally one-to-one map. In both cases, 
2, ... ,6, span the internal space formed by gener- the question of whether different Riemannian geom
ators of local Lorentz transformations, which we will etries, not infinitesimally close or not related by a 
denote by L(gK)' and provide the connecting quanti- continuous transformation, could correspond to the 
ties in this case. The parameters of linear connection same spin connection or to the same gauge potentials 
(gauge potentials) acting in L(gKA) are introduced was left open. 
and a map to the parameters of the event connection In Sec. II we recall the elements of the theory of a 
is established by requiring the covariant constancy spin connection in a Riemannian event space and 
of the Li/(XIl). summarize results of prior work which are relevant 

If the spin connection or gauge potentials are to be here. At the same time we introduce our notation 
considered as fundamental fields, it is natural to and mention some points which may not be entirely 
inquire into the uniqueness of the event geometry familiar. In Sec. III we go on to study, for the case of 

2187 
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the spin connection, the same inverse problem con
sidered in Ref. 4, but by a different method, which 
employs anholonomic bases in the Riemann event 
space. In Sec. IV, the method using anholonomic 
bases is applied to the problem involving the gauge 
potentials in L(gJ().) , where we state the problem, 
indicate the method of solution briefly, and cite the 
results. 

II. THE SPIN CONNECTION IN A 
RIEMANN SPACE 

We consider a 4-dimensional event space with time
space coordinates xl<, K, A' .. = 0, 1, 2, 3, which is 
endowed with parameters of a symmetric linear con
nection r PI<;' and a symmetric, covariant-constant 
metric field gJ().' The "Dirac operators" are defined at 
each event by the quadratic decomposition7 

(1) 

where I is the identity. The solutions yix") of Eq. (1) 
are represented irreducibly at each event in local 
4-dimensional Dirac spin spaces. According to Eq. 
(1), in a curved space the yp are necessarily functions 
of the coordinates. 

It is useful in this study to introduce the spin 
metric explicitly. The spin metric is Hermitian, a 
property which in index notation is expressed by 

gab = giia' (2) 

We will use Latin indices a, b,' .. = 1,2,3,4 to de
note components of objects represented in the spin 
space. Under a change of local spin base, a ->- af

, we 
have the transformation matrix S = S;· and its inverse 
S-l = S: .. Unbarred contra- and covariant indices 
transform according to Sand S-l, respectively, and 
barred indices transform by the complex-conjugate 
matrices. We are using bars above indices to specify 
their transformation rule where dots are often used.s 

We require that the Dirac operators satisfying Eq. (1) 
be self-adjoint with respect to the spin metric, Le., 

(3) 

where Yp.i is the complex conjugate of Yp./' On 
account of the irreducibility of the Y P' Eq. (3), for a 
given fixed Dirac operator field, determines the spin 
metric g/J up to a multiple of a real number. We con
struct from the Dirac operators the 16 linearly in
dependent operators 

iI, iyp, Y[p.Yvl' YpY6' iY6' (4) 

In Eq. (4), 

Y5 = (1/4!) Idet g .. i- EPvJ().ypyvY"y;., (5) 

where EPV";' is the totally anti symmetric tensor ~
density of weight 1. Real linear combinations of the 
16 elements (4) form the Lie algebra L(gab) of the 
unitary group U(ga"b) of transformations which leave 
gab invariant. 

The definition of equivalence of spinors at neigh
boring events is given by parameters of a linear connec
tion, the spin connection rpab

• By virtue of the 
inhomogeneous transformation law 

(6) 

this definition of equivalence, or, what is the same, 
spin covariant differentiation, is invariant under 
local spin base transformation, where we are using 
the matrix notation rp = rpab, r~ = Ppa,b'. 

We insist that the norm tp°tpa of arbitrary equivalent 
spinors be invariant. This condition is satisfied if and 
only if 

Vpgali == opgali - rpaCgcjj - rp.jjCgca = 0. (7) 

If the spin curvature 

<l>pv = oprv - ovrp - [rp, rvl (8) 

and its covariant derivatives V K <I> pv , ... , V co ••• 

V K<I> pv belong to L(gab)' and if, consequently, the spin 
holonomy group9,IO is U(gajj) or a subgroup of U(gajj), 
then (7) is satisfied. 

It is sometimes convenient to use special bases in 
spin space. In particular it is convenient and possible 
to choose a base at each event such that the spin 
connection belongs to the Lie algebra of the holonomy 
group, which at this point of the discussion is U(ga;;) 
or a subgroup thereof. In such bases the spin metric is 
numerically constant, as can be deduced from (7). We 
caU these normal bases. 

In a normal basis, r pab belongs to L(gajj) and is 
therefore anti-self-adjoint with respect to gajj , i.e., 

(9) 

where the ~ is used to indicate that the equality is 
asserted only in normal bases. Now (9) is satisfied 
only if the trace part of r p calculated in a normal basis 
is purely imaginary.u Then in any base, we have 

rp = srp + iap - opa, (10) 

where s r p is the traceless part of the spin connection, 
ap' is a real vector field, and a is the trace of the genera
tor of a transformation relating an arbitrary spin basis 
to one where the spin metric is numerically constant. 

The algebraic relation between the Dirac operators 
and the event metric field places certain restrictions on 
the traceless part of the spin connection and from now 
on when we speak of the spin connection, it will be 
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understood that we mean the traceless part. For a 
metric space, the most general relation defining the 
spin connection which is compatible with (1) is 

VroY" == aroy" - rw/Yp - [Srw, yJ = iMw,,' (11) 

where MroK is a tensor and either vanishes or belongs 
to L(gab)' In the latter case it must satisfy 

Mw("YJll + Y(JlM\w\"l = O. (12) 

The most general solution of (12) is of the form 

(13) 

where Mw belongs to L(gab)' Here we will be concerned 
with the only case that has been studied, namely, 
MWK = 0, or 

VwY" = O. (14) 

As a consequence of (14) and the definition (5), 

V wYs = O. (15) 

Equations (14) and (1) define a relation between the 
metric field of a Riemann space and the spin connec
tion. The first integrability condition for (14) is 

R"'Jl/Yp + [<PWJl' Yv] = O. (16) 

On account of the irreducibility of the Dirac opera
tors, the traceless solution of (16) is unique and is 
given by 

(17) 

It follows that in a Minkowski space the spin connec
tion is integrable and hence of no physical interest. 
Moreover, we see from (17) that <P JlV and its covariant 
derivatives are contained in the Lie algebra of the 
Lorentz group and hence the spin holonomy group 
is the Lorentz group or a subgroup thereof. 

When we assume that the Riemann geometry is 
given, we may solve (14) for s r Jl' Choosing a normal 
basis, it follows from (16) that sr Jl must be a linear 
combination of the bivectors Y[KY.l]' In a normal basis 
let 

(18) 

Then, with (18) and (14), 

oJlYv - rJl/Yp + 4aJlv Pyp ~ O. (19) 

Multiplying (19) by y" and contraction of spinor in
dices yield 

(20) 

solution for the spin connection in terms of the 
Riemannian geometry. This solution is simpler than 
those given by Fletcher12 and Loos 13;however, their 
solutions hold in arbitrary local bases, while the 
solution given here holds only in the special bases, as 
indicated in (18) and (20). 

Summarizing at this point, we have the well-known 
results that, for a given Riemannian geometry and a 
spin connection related to the Riemannian geometry 
by the covariant constancy of the Dirac operators, 
the spin connection exists and the traceless part is 
determined uniquely by the Riemannian metric field 
and is given explicitly by Eqs. (18) and (20). The spin 
connection is nonintegrable if and only if the param
eters of the event connection are nonintegrable. 

Let us turn now to the so-called inverse problem 
where the spin connection is assumed given and we 
seek the Dirac operators Y}J and the parameters of the 
linear connection for a Riemann space as solutions of 
the mapping equations stated above. The physical 
interest in this problem arises when one wishes to 
consider the spin connection as a fundamental field 
in elementary particle theory. Since this field carries 
energy and momentum, it should give rise to an under
lying Riemann geometry. The question which has 
been asked is whether this geometry is unique. Loos4 
has solved this problem by showing an algebraic 
condition for which the parameters of the event con
nection are determined uniquely by the spin connection 
in a neighborhood of an assumed solution or ilK" of 
the mapping equations. The metric field remains 
undetermined by a uniform scale transformation, 
say p, and the Dirac operators are hence undetermined 
by the factor pt. In addition the Y Jl are undetermined 
by a transformation exp (iocys) with constant, real 
oc. With the other known results summarized above, 
this uniqueness condition guarantees that the map 
between parameters of the event connection and the 
spin connection is locally one-to-one. 

The invariance of the theory under the transforma
tion exp (iocys) can be shown as follows.14 Suppose 
orJl/ and °gJlK are a solution of (1) and (14) for fixed 
s r Jl' Then, °Y Jl + by Jl ' for an infinitesimal variation 
byJl , will satisfy (1) and (14) if and only if 

(21) 

and the variation 61' Il is covariant constant. In view 
of (14), this condition is satisfied if 

(22) 

where eVil means covariant with respect to the event By Schur's lemma, the general solution of (22) is 

indices only. With (18) and (20) we have an explicit VJlL = Pi, (23) 
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where fJll is an arbitrary vector field. The first integra
bility condition for (23) is 

(24) 

which shows that o[Ilf3V] vanishes and that the general 
solution is 

L = f3I + iOCY5, 

where II. and f3 are arbitrary scalars. Returning to (23) 
and recalling that Y5 is covariant constant, we see 
that f31l = 01lf3 and that oc is a constant. We require 
also that gab is invariant, which forces oc to be real. 
Hence the theory is invariant, for arbitrary fixed spin 
basis, under the object transformations of spinors 
generated by iOCY5' which is the only part of L of 
interest. This invariance arises because the Lie 
algebra of the spin holonomy group is not represented 
irreducibly. If the spin holonomy group were, for 
example, the full unitary group of gab, then this in
variance would not exist. But then, as we have seen, 
the map between the spin and event connections would 
not exist either, if we still insisted on a Riemannian 
event space. 

III. THE USE OF ANHOLONOMIC BASES 
IN THE EVENT SPACE 

The inverse problem appears to be nonlinear in the 
following sense. Invoking the Christoffel formula we 
may write (14) in terms of the Riemann metric and the 
Dirac operators. Then gKA can be eliminated from the 
equation with the aid of the quadratic decomposition 
of Y p,' This gives what appears to be a nonlinear 
partial differential equation in Y 11' which we have not 
studied further in this form. 

It turns out that the apparent nonlinearity in the 
inverse problem can be avoided by using anholonomic 
bases in the Riemann space. We shall see that the 
problem of solving the system of equations which 
couple the local Dirac operators, the event tensor, 
and the parameters of the event connection can be 
reduced to solving a linear partial differential equation 
in the transformation coefficients which relate holo
nomic to anholonomic bases. 

Let "e A denote a system of reference vectors of the 
coordinate system x A• The "eA satisfy 

o[/eA] = 0, (25) 

and are called a holonomic basis. We may employ a 
new basis at each event which is obtained from the 
holonomic basis by the transformation 

(26) 

In the sequel, we need the matrix A~ as well; it is 
defined by 

(27) 

The new basis AeA is holonomic if and only if 

o[/eA] = O. (28) 

If the transformation At does not satisfy (28), the 
system of reference formed by the fields Ae;. is called 
an anholonomic basis. In the following we shall use 
Greek letters to indicate holonomic bases and capital 
Latin letters to denote anholonomic bases. 

Suppose we choose bases at each event such that 
the event metric field is constant. It is clear that unless 
the event space is a Minkowski space we will have 
to use anholonomic bases to achieve this. Then 

(29) 

and covariant constancy of the Dirac operators reads 

'VIlYA == 0IlYA - rl'fYn - [Srll , YAJ = O. (30) 

Further, we may choose a spin basis such that the 
Y A are numerically constant. Then we have 

-rllfYB - [SrI" YAJ ,;, 0, (31) 

the solution of which is 

rIlAB';' -TryB[Srl"YA]' (32) 

We do not yet have a solution of the inverse problem 
since we do not know the parameters of the event 
connection in the holonomic coordinate system in 
which the spin connection is specified. 

Under the transformation At, the parameters of the 
connection transform according to 

(33) 

Alternation over AB in (33) yields 

r[ABl
c 

= A~A;SI''' AA; - A~A;o[I'A~, (34) 

where SI'/ is the torsion tensor. In accord with 
general relativity we take a vanishing torsion. Then 
transvection of (34) with A1 A;; yields 

(35) 

The coefficients r;:A in (35) are determined by (32) 
when the gauge potentials are specified. The trans
formation matrices are thus determined by a linear 
equation and if one had a solution A~ , the parameters 
of the event connection would be computed from the 
transformation law 

rl'/ = A;rI'ABA~ - A~o"A~. 

The event connection calculated in this way is sym
metric and metric. The uniqueness of solutions r I'K;' 

is thereby established by the number of solutions 
A; of (35). 
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Because of the symmetry of the event connection, 
we may write (35) in the form 

VrvA1) = O. (36) 

The first integrability condition for (36) is 

R[!'v\A\B A1) = 0, (37) 
where 

R/lvA
B = o!,rvA

B - Ovr!'AB - r!'AorvOB + rVAor!'t. 
(38) 

We may write (37) as an array of linear algebraic 
equations, with a 16 X 16 matrix of coefficients, say 
N: 

R23A
B 

0 RaoAB R02AB At = o. (39) 

[ 

0 R23A
B 

R31AB Rl2AB] [At] 
R1aAB RaoAB 0 ROlAB At 
R12AB R20AB RouB 0 At 

By inspection one sees that the rank of N is at most 
fifteen, so there is at least one solution. 

With the aid of the integrability condition (39), we 
may simplify the differential Eq. (36). The general 
solution of (36) can be written in the form 

(40) 

where it is necessary that ° A1 satisfy the integrability 
condition (39). If we restrict the determinant of 0 A1 
to be a fixed value, then oA1 is determined uniquely 
if the rank of N is fifteen. For definiteness we take 
det oA1 = 1. Substitution of (40) in (36) yields 

°Ai!Vv]<p + V[voA.;3<P = O. (41) 

Covariant differentiation of (41) and alternation over 
holonomic indices yields 

(Vrw
OA1)Vv]<p + °Ai!V wVV]<p 

+ (V[wVvoA.;3)<p + V[voA1V W]<p = O. 

The first and last terms cancel and the second term 
vanishes because V wand V v acting on a scalar 
commute. The remaining term may be expressed in 
the form 

(VrwVvOA~)<p = tR[wv\B~oA~<p, 
which, by virtue of the definition of °A1, also vanishes, 
and we see that this integrability condition for (41) is 
satisfied identically. Whether this condition is suffi
cient for existence of a scalar function <p has not been 
investigated. What is needed here is a theorem for the 
curl Eq. (41) [or (36)], of the type proved by Veblen 
and Thomas15 for gradient equations. 

We have seen that the general solution for the 
transformation matrix may be written in the form 

shown by (40). If the condition det oA1 = 1 is 
imposed, then oA1 is uniquely determined by (40) if 
the rank of N is maximum. The uniqueness is thus 
established by the number of different solutions <p of 
(41). Suppose there are two solutions <p and <p' of (41) 
with the same oA1. Then it follows by subtracting the 
two equations for <p and q/ that 

°Atsv] In g/ = O. 
<p 

Transvection of (42) with oAAa yields 

3Vv In (<p'/<p). 

Equation (43) implies 

<p'(x") = a<p(x"), 

(42) 

(43) 

where a is an arbitrary real constant. If the rank of N 
is maximum, there is only one solution °A!, with 
det 0 A1 = 1, of the integrability condition (39). Then 
according to (40), the transformation matrix is 
determined uniquely up to the constant factor a. This 
nonuniqueness represents a uniform scale transforma
tion of the metric field. The parameters of the event 
connection are unaffected by this scale transformation. 
Thus we have shown that if the rank of the matrix N 
is maximum, the correspondence between the spin 
connection and parameters of the event connection 
is one-to-one. Moreover, Loos4 has shown that the 
identities satisfied by the Riemann curvature do not 
force the rank of N to be less than 15, so that cases 
where this does occur6 should be considered excep
tional, and in this sense we may say that the 
correspondence between the spin and event connec
tion is almost always one-to-one. 

IV. THE INVERSE PROBLEM FOR GAUGE 
POTENTIALS ACTING IN THE ALGEBRA 

SPACE OF LOCAL LORENTZ 
TRANSFORMATIONS16 

The generators of local Lorentz transformations 
Li/' i,j'" = 1, ... ,6, have both event and 
algebra indices and thereby play the role of connecting 
quantities. The local generators are anti-self-adjoint 
with respect to the event metric, 

Li,/g;.!, + Li/g;'K = 0, (44) 

and hence satisfy the commutation relations 

[Li' L j] = Ci/Lk , (45) 

where Ci / are the structure constants of the group of 
local Lorentz transformations. The gauge potentials 
are introduced by insisting that 

V!'L i = o!'Li - [Cr!" Li] - r!'lLj = 0. (46) 



                                                                                                                                    

2192 RICHARD P. TREAT 

Equations (45) and (46), together with the requirement 
that the event space be a Riemann space, establishes 
the map between the parameters of a symmetric and 
metric event connection and the gauge potentials. 

Let us now consider the system of Eqs. (44)-(46), 
defining the inverse mapping in a particular anholo
nomic basis. We fix the algebra base up to constant 
Lorentz transformations by the requirement that Ci : 

are numerically constant. In this base, the generators 
L;,/ at different points xK and y" satisfy 

[L;(xK), LlxK)] = Ci/Lk(XK), 

[L;(yK), Lj(yK)] = CijkLk(yK), 
(47) 

with the same structure constants in both equations. 
The generators at x" and yK are therefore related by a 
similarity transformation. If we are not restricted by 
holonomity of basis, we may then obtain generators 
independent of the coordinates by a transformation 

LiA B(yI') = AA(y")Li/(y")Af(y") = JALi/(x")Jf, 

In such an anholonomic basis, we have 

0"Li1 ~ O. (48) 

In addition we have, for the special basis in L(gKJ.), 

r " * biC K I'i = ,. ii , (49) 

where (49) guarantees that the holonomy group of the 
gauge potentials is the Lorentz group or a subgroup 
thereof, a condition which is necessary in order for 
solutions of the inverse map to exist.6 Further, we have 

LiACgoIJ + La/goA = O. (50) 

With (48), the mapping Eq. (46) is now algebraic and 
reads 

r eB or B * r j B 
- "A LiC + LC4 "C = "i LiA , (51) 

where r/ll is given by (49). Substitution of 

B!.- i B r /lA - - b/lLiA (52) 

into (51) and use of the commutation relations (45) 
shows that (52) is a solution of (51). We may add to 
this solution a matrix which commutes with the 
LiAB. Since the LiAB form an irreducible set, the 
general solution is 

r 1J * b i L B + 5i.B 
JlA = - JI iA C1.Jl uA· (53) 

The event space is a metric space, so we have 

V'/lgAB = 0. (54) 

Using (53) in (54) yields 

The second term vanishes, since the LiA 0 are anti-self
adjoint with respect to gAB and, hence, we have 

O"gAB - 2C1."gAB = O. (55) 

However, the integrability condition for (54) is 

o["OCV ] = 0. (56) 

It follows that the part of the connection in (53) 
proportional to the identity can be transformed away 
by a transformation that leaves LiA B constant, so we 
mayas well take oc = 0, and the desired solution of 
(51) is (52). 

As in the case of the spin connection, a solution of 
the mapping equations can be constructed from (52), 
once one knows the transformation matrix A!. The 
A! is found as a solution of the same differential 
Eq. (36) as before. The uniqueness of the r,,'/ then is 
established, as before, by the uniqueness of the solu
tions of the linear equation. The question of unique
ness has therefore been settled by the arguments 
already given in Sec. III. So we have also reached the 
conclusion here that the correspondence between 
gauge potentials is one-to-one providing the rank of 
the matrix N is maximum. 

One difference in the two problems is that the Li/' 
which appear as solutions of the mapping equations, 
are unique for given fixed gauge potentials, structure 
constants, and parameters of the event connection. 
While the Dirac operators, which played the analogous 
role as connecting quantities, are arbitrary by a uni
form scale transformation pi and similarity trans
formation with transformation matrix exp (irxys). The 
latter differences arises from the fact that Lorentz 
holonomy group is represented reducibly in the spin 
space, while the Lie algebra space L(gKA) affords an 
irreducible representation of the Lorentz holonomy 
group. 
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The scattering problem of three equal particles interacting via repulsive inverse-cube forces is solved in 
one dimension both in the classical and the quantal cases. The quantal S matrix is similar to that produced 
by repulsive 6-function interaction of infinite strength. 

1. INTRODUCTION 

The I-dimensional problem of three equal particles 
interacting via repulsive inverse-cube forces has been 
recently studied and the whole set of eigenfunctions 
given. l However, the scattering of these three particles 
has not yet been considered; its study is the aim of the 
present paper. 

We find that the scattering amplitude of this process 
is quite simple and very similar, in spite of the long
range forces involved, to the amplitude produced by 
an infinitely repulsive d-function interaction. 2•a Specifi
cally, the S matrix has non vanishing elements only 
between states differing in the interchange of the 
momenta of the two external particles. 

In Sec. 2, the Hamiltonian of the system is stated; 
in Sec. 3, the classical problem is briefly studied and 
the (classical) scattering process discussed; in Sec. 4 
the quantum scattering amplitude is derived. 

2. HAMILTONIAN OF THE SYSTEM 

Let us consider three equal particles moving on a 
straight line and interacting via repulsive inverse-cube 
forces. The Hamiltonian of this system is 

H = (2m)-I(p~ + pi + pi) 

+ g[(Xl - X 2)-2 + (Xl - Xa)-2 + (X2 - Xa)-2], 

(2.1) 

where Xl, X2 , Xs are the coordinates of the three 
particles, PI, P2, Pa their conjugate momenta, m the 
mass of each particle, and g a positive (coupling) 
constant. 

In order to exhibit the separability of this Hamil
tonian4•5 and to write it in a more manageable form, 
it is convenient to separate the center-of-mass coordi
nate from the internal ones, setting 

R = HX1 + X 2 + Xa), 

~ = 6-i (XI + X2 - 2Xa), (2.2) 

'Y] = 2-i (XI - X2). 

We introduce next the 2-dimensional spherical 
coordinates rand q;: 

~ = r cos q;, 0:::;; r < 00, 
(2.3) 

'Y] = r sin q;, 0:::;; q; < 27T. 

In these variables, the Hamiltonian in the center-of
mass frame readsl 

H = -.!.(p; + p!) + 9g 1 . (2.4) 
2m r2 2 r 2 sin2 (3q;) 

This Hamiltonian is formally identical to that of a 
particle of mass m, moving in a plane and subject to 
the (noncentral) potential 

19(r sin 3q;)-2. 
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The a, 'Y}) plane may be separated in six sectors, 
according to the different ordering of the three 
particles: 

0< cp < i17, Xl> X 2 > Xa, 
i17 < cp < i17, Xl> Xa > X2 , 

i17 < cp < 17, Xa > Xl > X2 , 

17 < cp < t17, Xa > X 2 > Xl, 

t17 < cp < i 17, X 2 > Xa > Xl, 

i17 < cp < 217, X 2 > Xl > Xa. 

This can be easily seen using the relations 

Xl - X2 = 2!r sin cp, 

(2.5) 

Xg - Xa = 2!r sin (cp + i17), (2.6) 

Xa - Xl = 2!r sin (cp + t17), 
which follow from Eqs. (2.2) and (2.3). 

The singular nature of the repulsive interaction 
forbids any exchange in the ordering of the particles, 
so problems in different sectors are not correlated 
(apart from a possible symmetry requirement in the 
quantum-mechanical case). 

3. CLASSICAL CASE 

Before investigating the more interesting quantum
mechanical scattering problem, let us briefly study the 
classical case, which displays in a very intuitive way 
the most interesting features of the process. To do this, 
we derive the exact solution describing the motion of 
the classical system. We start from the two integrals of 
motion [yielded by the separability of the Hamil
tonian (2.4)]: 

(2m)-lp; + B2r- 2 = E, (3.1) 

(2m)-lp! + tg sin-2 (3cp) = B 2. (3.2) 

Here E is the total energy of the system and B is an 
"angular" constant of motion. Recalling that 

dr 
Pr= m-, 

dt 

2dq; 
P =mr-

'P dt ' 
(3.3) 

it is straightforward to first solve Eq. (3.1) and sub
sequently Eq. (3.2), using the knowledge of ret). 
In this manner one finds 

ret) = [(2Ejm)(t - (0)2 + B2jE]!, (3.4) 

cos 3q; = (1 - 9g/2B2)1 

X sin {arc sin [(1 - 9gj2B2)-1 cos 3q;01 

- 3 arc tan [(2/m)f(E/B)(t - to)]). (3.5) 

These equations constitute an explicit solution of the 
equations of motion. 

We turn now to discuss the process of scattering. 
The initial state of the system is completely specified by 
the asymptotic expressions 

(3.6) 

The scattering problem consists in determining the 
asymptotic motion of the particles after the collision, 
which will, of course, again be of the form 

X2~v~t+a~, 
t---+oo 

(3.7) 

X3 ----* v~t + a~. 
t---+oo 

We now show that VI, aI' v~, a~, etc., are related by the 
following relations: 

vl = Va, al = aa, 

v~ = V2 , a~ = a2 , (3.8) 

v~ = VI' a~ = a l . 

This means that particles 1 and 3 interchange their 
asymptotic behaviors, while particle 2 passes "undis
turbed" through the quite complicated process of 
scattering! To prove Eq. (3.8), we confine ourselves to 
the case Xl > X2 > X 3 ; that is, i17 > q; > 0, the 
generalization to other situations being trivial. From 
Eq. (3.5), it is possible to verify by explicit calculation 
that 

with 

and, from Eq. (3.4), 

I I ex = 317 - ex, 

(3.9) 

{J' = -{J, 

r -----+ -(2E/m)1(t - to), 
t~-~ 

(3.10) 
r ----+ (2E/m)1(t - to). 

t,-++oo 

Inserting these equations into the Eqs. (2.6), which 
give the explicit dependence of Xl' X2 , and Xa upon 
rand cp, yields Eqs. (3.6), (3.7), and (3.8). This ends 
our proof. 

It is interesting to compare the process under con
sideration with the scattering of three particles inter
acting via infinitely repulsive b-function interactions. 
In the latter case, every collision merely interchanges 
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FIG. 1. Comparison between two motions with different g, but with the same asymptotic behavior. The corresponding infinitely re
pulsive (J interaction solution coincides with the asymptotic straight lines. 

the free motion of the particles involved. Thus, the 
solutions of the motion correspond to the asymptotes 
of the solutions of the case discussed above. In Fig. 1 
an example is drawn; the two curves correspond to 
different values of g and both tend asymptotically to 
the straight lines representing the solution of the 
motion of a system with infinite <5 interactions. The 
solid curve and the dashed one correspond to g = 
100, m = 1, and g = 500, m = 1 (in arbitrary units), 
respectively; it is clear that, for smaller g (that is, for 
weaker repulsive interactions), the solutions of the 
motion approach the straight lines in a larger zone. 

In the next section, we see how the property (3.8) is 
reflected in the quantum scattering amplitude. In fact, 
the symmetry between initial and final states in the 
classical cases suggests that in the quantal case "in
coming" and "outgoing" wavefunctions be related by 
a strict symmetry requirement, which, in the sense 
discussed in Ref. 2, forbids any "diffraction" during 
the scattering. 

4. QUANTUM SCATTERING AMPLITUDE 

We study the process of scattering in the framework 
of the time-independent scattering theory; we con-

sider three particles obeying Boltzmann statistics and 
we confine ourselves to the sector t7T > q; > 0, corre
sponding to Xl > X2 > Xs. (The extension to the 
other cases is trivial.) 

We prove that to an "incoming" plane wavefunction 

const X exp i(KIXl + K2X2 + KsXs), 

Xl» X2» X s , KI < K2 < Ks , (4.1) 

there corresponds an "outgoing" wavefunction of the 
form 

const X exp i(KaXI + K2X2 + KIXS), 

Xl» X2» Xa, KI < K2 < Ks· (4.2) 

The above statement implies that the scattering 
wavefunction must have the following asymptotic 
behavior: 

1p ~ const [exp i(KIXI + K2X 2 + K3XS) 
IX;-Xjl-+oo 

+ y exp i(KsXI + K 2 X 2 + KIXS)], 

Xl» X2 »Xa, KI < K2 < K3, (4.3) 

where y is a complex number of modulus 1. 



                                                                                                                                    

2196 C. MARCHIORO 

We work in the center-of-mass frame, characterized 
by Kl + K2 + Ka = 0, and we associate with K1 , K2, 
Ka a vector in a 2-dimensional space 

K~ = 6-!(Kl + K2 - 2Ks), 

K" = 2-1(K1 - KJ. 

V'fhen in this plane we introduce a system of spherical 
coordinates, in analogy with formulas (2.3), setting 

K~ = Kcos qJin, 0 ~ K < 00, 

K" = K sin qJin, 0 ~ qJ < 27T. 

Then Eq. (4.3) in the coordinates rand qJ reads6 

V' ~ const {exp [- i Kr cos (7T + qJin - qJ) 
r--+", 

0<",<1" } + y exp [iKr cos (t7T - If'in - qJ)]. (4.4) 

To prove Eq. (4.4), we develop the most general 
wavefunction in terms of the eigenfunctions V'KI of the 
system as given in Ref. 1: 

V'KI(r, qJ) = Jsz+3a+!(Kr)(sin 3qJt+lC~+1(cos 3ip), 

o ~ ip ~ 17T, (4.5) 

a = HI + 2g)1, I = 0, 1, 2, .. " 

in units so that 2mn-2 = 1. Here K2 is the total energy 
(in the c.m. frame), q is a Gegenbauer polynomial, 
and J" a Bessel function. Hence, we have 

V'(r, ip) = ! bzl3z+3a+!(Kr) (sin 3iprlC~+i(cos 3ip) 
z=o 

(4.6) 

and, asymptotically, 

V'(r, ip) ~ ! i(2'7Tr)-1 
r--+'" z=o 

X bz(exp {-i[Kr - i7T(31 + 3a + I)]} 

- exp {i[Kr - t7T(31 + 3a + I)]}) 

x (sin 3ipt+lC~+!(cos 3ip). (4.7) 

From the property of the Gegenbauer polynomials 

c:C -X) = C -l) z
ct(X), 

we have 

c;+!(cos 3(!7T - ip» = exp (il7T)C~+!(cos 3ip). (4.8) 

Thus, 

V'(r, ip) ~ f i(27Tr)-ibz exp [ii7T(31 + 3a + 1)] 
r-+ '" z=o 

X {exp (-iKr)(sin 3ipt+1 C~+~(cos 3ip) 

+ Y exp (iKr)[sin 3(t7T - ip)r+! 

x C~+!(cos 3(l7T - ip»}, (4.9) 

with y independent of 1; specifically, 

y = exp (-3ia7T). (4.10) 

So, as a particular case ofEq. (4.9), Eq. (4.4) is proved. 
Note that Eq. (4.10) implies that the S matrix is 

independent of the energy of the scattering particles 
and that it depends on the strength g of the inter
action only through a phase factor. 

Of course, the simplicity of the S matrix does not 
imply the simplicity of the whole collision process; 
in fact, the motion of a wave packet through the colli
sion zone is quite complicated (as it was already 
suggested by the classical case). 

In conclusion, we have proved that the S matrix of 
this 3-body problem has nonvanishing elements only 
between states that differ only in the interchange of 
the momenta of particles 1 and 3, exactly as in the 
infinitely repulsive binteraction case. It is appealing 
to conjecture that a similar feature also holds, in 
analogy with the b case,2.S in the scattering of N 
particles. However, in the 3-body problem we have 
made use of the complete set of eigenfunctions, while 
for the N-body problem only the ground-state func
tion is known7; therefore, this problem is yet open. 
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Explicit formulas are derived for inverse Legendre transforms, i.e., for the solutions of the integral 
equation 

for arbitrary integer L and general functions f(r). It is shown that the functions !(r), defined by 2-sided 
transforms (b = -1), follow uniquely from the I-sided ones (b = 0), but an arbitrary function of parity 
opposite to L (supplementary function) may be added to GL in the 2-sided case. For L ~ 2, an arbitrary 
polynomial of the same parity as L, but of degree lower than L (complementary function), may be added 
to GL • The complementary and supplementary functions do not affect the values of the integrals for the 
radial dependence in the expansion of a function of a vector sum in spherical harmonics. A power term in 
f(r) leads to a power term in GL , except for those powers which occur in the complementary function for 
which GL involves logarithms. Inverse transforms are also obtained for a restricted number of negative 
powers and some recurrence relations are derived. 

1. INTRODUCTION 

It is well known that a function depending on a 
vector rAB = (r AB, 0 AB' 4> AB), which in turn is the 
sum of s component vectors fj = (ri' OJ, 4>;), can be 
expanded in spherical harmonics of the polar angles 
of the f,: 

V(fAB) = V(r1 + f2 + ... + fs) 
$ 

= L IT P~i( cos ();) 
l.mj=l 

x exp (imjO j)R(V; I, m; {r ;}). (Ll) 

In particular, if V is a function of the radius multiplied 
by a single harmonic of the angles 

V = f(rAB)Pf(cos 0AB) exp (iM4>AB), (1.2) 

then, as one of the authors has shown in a series of 
papersl (referred to as I-IV, respectively), the radial 
part can be split into two factors: 

R(f; L, M; I, m; {ri}) 

= K"(L, I, M, m)R"(f; L, I; {rin. (1.3) 

Of these factors, only the first, which is essentially 
an integral of a product of spherical harmonics over 
the unit sphere, involves the azimuthal quantum 
numbers m j • The second factor R", which alone 
involves the nature of the function j and the magni
tudes of the vectors r i' can be represented, for a wide 
class of functions j, either as a series expansion 
(Papers I-III), as a I-dimensional Hankel integral;,3 
or as an s-dimensional integral over a unit hypercube 

(Paper IV): 

R"(f; L, J, {riD 

=f1 .. -f1 GL(L rju j ) IT [P1;CUj) dUll. (1.4) 
-1 -1 

The kernel GL(w) is independent of the Ii and even 
of the number s of component vectors; hence, its 
relation to j and L is most easily found by choosing 
s = 1. In this case, the expansion (Ll) reduces to a 
single term with I = L, so that (1.4) becomes 

fer) = flGL(rU)PL(u) duo (1.5) 

Negative values of r are physically meaningless, and 
f can be chosen arbitrarily for negative values of its 
argument; similarly, the kernel G can be arbitrarily 
modified, provided the resulting integral is not altered 
for r ~ O. In IV, it was assumed that the kernel 
vanishes for negative argument, so that the contri
bution to the integral (1.4) is confined to one-half of 
the hypercube and (1.5) can be written as 

fer) =fgL(ru)PL(u) duo (1.6) 

The integrals (1.5) and (1.6) can be considered as 
2-sided (2-s) and I-sided (l-s) Legendre transforms, 
respectively, and the problem consists in finding the 
inverse Legendre transforms (ILT) for a given func
tion/and rotational quantum number L: 

G(w) = 2C:Ll[f(r»), g(w) = lCi[f(r)]. (1.7) 

2197 
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In IV, explicit formulas were derived for 1[2(0'), 
N> L - 2, and for lL2[f(r)] for arbitrary f and 
L = ° or I. 

The purpose of the present paper is twofold. First, 
it will be shown that: 

(a) solutions of the I-s ILT (1.6) are not unique for 
L> 1; 

(b) solutions of the 2-s ILT (1.5) exist only iff(r) 
has the same parity as L; if this consistency condition 
is satisfied, an arbitrary function of the wrong parity 
can be added to GL(w) without affecting (1.5); 

(c) the kernel GL(w) for the s-dimensional Legendre 
transform (1.4) exhibits all the arbitrariness of the 1-
dimensional ILT for all physically relevant combina
tions of the Ii' 

Secondly, explicit solutions ofILT's are derived for 
all values of L and all functions fer) possessing a 
sufficient number of derivatives. Recurrence relations 
are deduced, and the transforms for some nonanalytic 
functions are discussed in detail. 

2. NONUNIQUENESS OF THE SOLUTIONS; 
COMPLEMENTARY AND SUPPLEMENTARY 

FUNCTIONS 

The Legendre polynomials PL(u) are either even or 
odd functions depending on the parity of L. In conse
quence, they are orthogonal over the interval (-I, 1) 
to any function of the opposite parity. Denoting an 
arbitrary even or odd function by TP. or TPo' respectively, 
we have 

f~iru)PL(U) du = 0, Leven, 

f11f'eCrU)PL(U) du = 0, L odd. 
(2.1) 

Furthermore, a Legendre polynomial PL(u) is orthog
onal, over the same interval, to any polynomial 
Q.,(u) of degree n < L: 

fpn(U)PL(U) du = 0, n < L. (2.2) 

For powers un of parity opposite to L, Eq. (2.2) can 
be considered a consequence of (2.1), but for powers 
of the same parity the contribution to the integral for 
positive and negative values of U are the same, so that 
for even- or odd-powered polynomials Q •. ,,(u) and 
Qo . .,(u), respectively, we obtain 

fQe.n(U)PL(U) du = 0, Leven, n < L, 

(2.3) 
fQo.n(U)PL(U) du = 0, L odd, n < L. 

If we call the set of polynomials satisfying (2.3) the 

complementary function and the set of functions satis
fying (2.1) the supplementary function, we see that: 

(a) the I-s ILT gL(W) is indeterminate to within an 
additive complementary function; 

(b) the 2-s ILT Gdw) is indeterminate to within 
additive complementary and supplementary functions. 

For L = ° and L = 1 no complementary function 
exists and, hence, the solutions go(w) and gl(W) of 
(1.6) are unique; these are the cases explicitly solved in 
IV. The occurrence of the arbitrary complementary 
and supplementary functions would be a serious 
matter if they affected the value of the s-dimensional 
integral (1.4). Fortunately, they do not influence the 
value of R" for all those combinations of {Ii} for 
which the factor K" of (1.3) differs from zero. Two 
necessary conditions for K"(L, I; M, m) ::;r6 ° are that: 

(i) L + ,2 Ii is even; 
(ii) none of the indices L and Ii exceeds the sum of 

all the others. 

According to (i), the product II Pl/Ui ) has the 
parity of L on simultaneous sign reversal of all the 
ui ; hence, the supplementary function will contribute 
nothing to the integral over the hypercube. According 
to (ii), we have ,2 Ii > L; since any power (,2 riui)n 
can be expanded in products of powers II U~i, L n i = 
n, by means of the multinomial theorem, (2.2) implies 
that at least one ni < Ii in each term and the integral 
over the corresponding ui vanish in view of the orthog
onality. Integrals (1.4), for sets of {Ii} for which K" 
vanishes, are of no physical significance. 

The converse problem concerns the nature of the 
2-s ILT GL(ru) if fer) itself has the properties of the 
supplementary function, i.e., the opposite parity to 
L. If G(ru) is split into an even and an odd com
ponent, the integral over the component of the same 
parity is again of the same parity, whereas the com
ponent of the opposite parity contributes nothing. 
Hence, the only functions fer) for which 2-s ILT's 
exist are those of the same parity as L. In fact, apart 
from the ineffective supplementary function, we can 
always put 

G(w) = (-l) L G(-w) = ig(w), w > 0, (2.4) 

except when generalized functions occur at the origin. 
It is of interest to note that Ruedenberg,2 in discussing 
the equivalence of the Hankel and Legendre transform 
representations of the radial functions, uses a 2-s ILT 
of the form (2.4) rather than the one-sided form of 
Paper IV. Formally, every I-s ILT can be written as a 
two-sided one by introducing the Heaviside unit step 
function as a factor 

H(w) = 0, w < 0, H(w) = 1, w > 0, (2.5) 
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by means of which (1.6) can be written as 

(2.6) 

which was the notation employed in IV. Since the 
one-sided Legendre transform defined by (1.6) or 
(2.6) is of the same generality as (l.5) without the 
additional complication of the supplementary func
tion, the remainder of the paper will be concerned 
with I-s IL T's wherever possible. 

3. PARTICULAR SOLUTIONS OF THE ILT 
FOR POWERS AND POWER SERIES 

We assume fer) to be a power ,.v; it is clear that 
a particular solution for gL(W) is also proportional to 
w.Y. We have 

7T!r(1 + N)r1- N 

= rV (3.1) 
r(1 + tN - tL)r(t + iN + iL) 

(cf. B3.12.23).4 For even L, the integral converges for 
N> -1 and, for odd L, it converges for N > -2 
[the pole in the numerator of (3.1) is cancelled by a 
similar pole in the denominator]. We thus obtain 

(3.2) 

where CNL is the reciprocal of the fraction in (3.1) and 
can be simplified by means of the duplication formula 
(B1.3.I 5) for the gamma function to 

C NL = (1 + N)(3 + N) ... (L + N + 1) , 

(2 + N - L)(4 + N - L)" . N 

Leven, N > -1, N ¥- 0, 2, ... , L - 2, (3.3) 

c'n = (2 + N)(4 + N)' .. (L + N + 1) 

" (2 + N - L)(4 + N - L) ... (N - 1) 

L odd, N > -2, N ¥- 1,3, ... ,L - 2. (3.4) 

For L = ° and L = 1 the products in the denomina
tor become empty; the value of such an empty product 
is always to be taken equal to unity. The results (3.3) 
and (3.4) were already derived in (IV.45), but the fact 
that a vanishing denominator leads to a pole for CNL 
and that the equations resume their validity beyond 
these singularities was overlooked. These poles occur 
when yN has the form of a complementary function 
(2.3) and solutions can be found by a limiting pro
cedure N = n + € -- n. Before proceeding to the 
limit, a certain multiple of the complementary func
tion is subtracted out and the limiting value is found 

by L'Hopital's rule: 

l£.ircrN) = lim Cn+<.L(Wn+< - w n) 
<->0 

= DnL lim (wn+€ - w n)/€ 

= DnLw
n log w. (3.5) 

Here DnL is the limit of the ratio of all the factors in 
(3.3) or (3.4) which do not vanish: 

D _ (1 + n)(3 + n) ... (L + n + 1) 
nL - , 

(2 + n - L) ... (-4)( -2) . 2· 4 ... n 

Leven, (3.6) 

DnL = (2 + n)(4 + n) ... (L + n + 1) , 
(2 + n - L) ... (-4)( -2) . 2 . 4 ... (n - 1) 

L odd. 

By means of the double factorial function 

(2k)!! = 2·4· .. (2k), (2k + I)!! = 1 . 3· .. (2k + 1), 

OJ! = I!! = 1, (3.7) 

Eqs. (3.6) can be written in a form independent of the 
parity of L 

D = (_1)(L-n)/2+1 (L + n + 1)1! 
nL , 

(L - n - 2) 1 ! n! 

L - n = 2, 4, ... , L or L - 1. (3.8) 

The integral in (3.1) diverges and, hence, the formulas 
(3.2)-(3.4) break down irremedially for N ~ -1 and 
L even or for N ~ -2 and L odd; however, solutions 
for the bilateral transform can be obtained for a 
limited number of negative powers in terms of 
generalized functions. We have 

The derivative of the Legendre function in (3.9) is 
easily evaluated by using Rodrigues' formula (B3.6.17), 
leading to the result 

dmPL(u) (_I)~(L-m)(L + m)! 

dum 2L [t(L + m)]! [t(L - m)]! ' 

m = L, L - 2, ... ,lor 0, 

= 0, for other values of m. (3.10) 

Substitution of (3.10) in (3.9) yields the 2-s IL T 

2£.-1(_1 ) 
L r m+1 

( _I)(L+m)/22L [.l(L - m)]' [.l(L + m)]' = 2' 2 • O(m)(W), 

(L + m)1 
(3.11) 
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valid for 

m = L, L - 2, ... , 1 or 0. (3.12) 

For m = L = ° and m = L = 1, this result was al
ready given in IV [Eqs. (48) and (50)]. It is interesting 
to note that the same generalized function may occur 
as the IL T of very differently structured functions 
fer); thus, according to (IV.52), b"(w) is propor
tional to the IL T for the 3-dimensional b function 
when L = 0, whereas (3.11) shows that it describes the 
inverse transform for ,-3 and positive even L > O. 

If a function fer) can be represented as a power 
series in r, its ILT can be found as the sum of the ILT's 
of the individual terms. 

4. INVERSE LEGENDRE TRANSFORMS FOR 
ARBITRARY FUNCTIONS 

If the Legendre functions PL(u) are expressed by 
means of Rodrigues' formula (B3.6.17), (1.6) becomes 

fer) = (1g(ur) + (.E...)L(U2 - 1)L du. (4.1) Jo 2 L! du 

This formula can be repeatedly integrated by parts, 
provided that g(w) has derivatives. in [0, r] up to the 
appropriate order; if we further assume that the inte
grated terms contribute nothing (this restriction will be 
discussed below), we obtain 

Now the expression 

F(x) =1x c/>(~) (x - e)L d~ 
" L! 

(4.3) 

yields the (L + l)th iterate of the integral of c/>(x) 
(ef. p. 221 of Ref. 5): 

d!F(x) I = 0, 1 = 0, 1, ... ,L, 
dx! " 

dL +1F(x) 
dXL +1 = c/>(x). (4.4) 

The integral (4.2) can be written in the form (4.3) 
when m = L, provided that r2 and w2 are taken as the 
independent variables: 

(2r)L+1f(r) = ~ r - w d(w2), f
r. (L)( )( 2 2)L 

owL! 

d(w2
) = 2w dw, (4.5) 

with the intermediate solution 

= - - [rL+1f(r)], (
1 d )L+1 
r dr 

(4.6) 

- gL(r) = - - - [rL+Y(r)]. (
d)L d(1 d)L 
dr dr r dr 

(4.7) 

In the special case L = 0, this yields the unique solu
tion 

d 
goer) = - [rf(r)], 

dr 
(4.8) 

already derived by elementary means in IV; for L > 0 
the last differentiation in (4.7) can be cancelled on 
both sides, leading to 

- gL(r) = - - [rL+1f(r)]. (
d)L-1 (1d)L 
dr r dr 

(4.9) 

The same formula could have been derived by apply
ing (4.3) and (4.4) to (4.2) with m = L - 1; this 
derivation shows that no arbitrary constant enters 
(4.9). For L = 1 the ILT is obtained explicitly from 
(4.9): 

(4.10) 

again in agreement with IV. For L ;;::: 2, (4.9) must be 
integrated, the explicit solution becoming 

gL(W) = (W(!~)L[rL+1f(r)] (w - r)L-2 dr (4.11) 
Jo r dr (L - 2)! 

in view of (4.3) and (4.4). 
However, comparison with (3.3) and (3.4) shows 

that it must be possible to simplify (4.11) since some of 
the differentiations under the integral sign are can
celled by subsequent integrations. These redundant 
operations can be eliminated with the use of the 
identities 

(~)2A = (~!)\u(! ~)J., (4.12a) 
dr dr r r dr 

(~)2).+1 = !(~ !)J. r2J.+2(! ~)J.+l, (4.12b) 
dr r dr r r dr 

which can be verified by applying them to any power of 
r. Rodrigues' formula (B3.6.17) for the Legendre 
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polynomials becomes, in view of (4.12), 

1 (d 1)). 2).(1 d )).( 2 1)2), P2;.(U) = -- - - U - - U -
4).(2A)! du u u du 

= _1_(!!..1)).[U2(U 2 
- 1)1\ (4. 13 a) 

2).A! du u 

). -

P (u) = _1_ !(!!.. 1) [U2H2(U 2 - 1)).]. (4.13b) 
2H1 2).A! u du u 

Substitution of (4.13a) in (1.6) and integration by 
parts yield, in analogy to (4.2), for even L = 2A, 

or 

r2).-1(! ~)). g(r) = (! ~)H1 [f(r)r2'-+1], (4.15) 
r dr r dr 

with the solution 

- -- -- r2H1 r dr J
W[ 1 (1 d))'+1 ](W2 - r

2»).-1 
gu(w) -. r2).-2 r dr [ f()] 2).-1(A - 1)! . 

(4.16) 

Similarly, substitution of (4.13b) in (1.6) yields, for 
L=2A+l, 

fer) = 1 t[(l~)). g(W)]w2H2(r2 - w2»)' dw, 
2).r2)'+2A! Jo wdw w 

(4.17) 

(~ ~)). g(r) = _1_(!~)H1[r2H~(r)], (4.18) 
r dr r r2H1 r dr 

g2H1(W) 

= wf.w ~[(! ~)H1 [r2H~(r)]] (w 2 
- r

2
»).-1 dr. 

• r2)' r dr 2).-1(A - 1)! 

(4.19) 

The explicit solutions (4.16) and (4.19) for the ILT 
are not applicable for A = 0, i.e., L = 0 and L = 1, 
and must be replaced by (4.8) and (4.10), respectively. 
The lower limits in the integrals in (4.16) and (4.19) 
have been left arbitrary as they affectg(w) only through 
the addition of a complementary function; in (4.11) 
this was not permissible. 

The crucial equation (4.6) can also be derived by an 
alternative, recursive, method which clearly shows its 

range of validity and that of its solution C 4.11) at 
every stage. It is convenient to treat both one-sided 
and bilateral transforms simultaneously by leaving the 
lower limit of integration undetermined. If we write 
gL for GL in (1.5) and make use of the recurrence 
relation (BlO.10.13) 

we find the relation 

(r :r + L + l)/(r) 

= fPL(U)[(L + l)gL(ru) + rugJ-.Cru)1 du 

(4.21) 

The integrated part vanishes for IX = -1 and for 
IX = 0 and Leven; for IX = 0 and L odd it vanishes 
only if g(O) = O. Assuming one of these conditions to 
hold, we obtain the recurrence relation 

= f g'z-.<ru)PL- 1(U) du (4.22) 

and, on repeated application of the same process, 

provided that the integrated part vanishes at each 
stage. On putting m = L and making use of the solu
tions (4.8) for L = 0, which is known from IV, Eq. 
(4.6) is obtained, of which (4.11) is the solution. For 
the bilateral ILT, the derivation is valid provided that 
fer) has derivatives to order L + 1 [and g(w) to order 
L] everywhere in [-w, +w1. For the one-sided ILT, 
the derivatives to the same order must exist in [0, w] 
and, in addition" all derivatives of parity opposite to 
L must vanish at r = 0 (This condition is automatically 
satisfied for the 2-s IL T in view of the parity conditions 
considered in Sec. 2). By contrast, the formulas (4.16) 
and (4.19) are valid provided thatf(w)H(w) possesses 
derivatives up to order A + 1 in (0, w]; moreover, 
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even if the derivatives exist only in the generalized 
sense, the solution remains meaningful, provided that 
the integration range [E, w] includes all the discon
tinuities, especially those occurring at w = O. If 
fCr) or any of the required derivatives have branch 
points at r = 0, the expressions (4.16) and (4.19) 
(using E > 0) are not necessarily solutions of (1.6) 
since the integral may diverge at its lower limit w = O. 
However, they may still represent valid solutions when 
substituted in the multidimensional integrals (1.4). 
Fractional powers and generalized functions occurring 
in the radial part of expansions involving 2 or 3 
constituent vectors have recently been discussed by 
Kay, Todd, and Silverstone.6 

The recurrence relation (4.22) has a partner in 
which the index of PL is stepped up; with the use of 
(BlO. 10. 14) 

d 
- [uPL(u) - PL+1Cu)] = -LPL(u), (4.24) 
du 

we obtain, under the same conditions as (4.22), 

(~ - !:)f(r) = rL ~f~) =jg£(ru)PL+1(U) duo 
dr r dr r 

(4.25) 

If (4.22) and (4.25) are combined, the relation 

1 d
2 

L(L + 1) f 
--2 [rf(r)] - 2 fer) = g'L(ru)PL(u) du 
r dr r 

(4.26) 

results, which was already obtained in IV. Applications 
of the formulas derived will be given in later papers. 
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work are directly referenced by the prefix B. 

sR. Courant, Differential and Integral Calculus,(English Transla· 
tion by E. J. McShane) (Blackie, London, 1936),Yol. II. 

6 K. G. Kay, H. D. Todd, and H. S. Silverstone, J. Chern. Phys. 
51, 2359, 2363 (1969). 
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An analysis is made of the relation between the tensor harmonics given by Regge and Wheeler in 1957 
and those given by Jon Mathews in 1962. This makes it possible to use the Regge-Wheeler harmonics, 
which are given in terms of derivatives of scalar spherical harmonics, for calculations while using 
Mathews' form of the harmonics [linear combinations of the elements of the product basis formed 
from a basis for scalar functions on the 2-sphere and a basis for symmetric tensors such that the 
product basis is split into sets which transform under the irreducible representations of SO(3)] to eluci
date the properties of tensor harmonics. Thus, a convenient orthonormal set of harmonics is given 
which is useful in studying, for example, gravitational radiation. 

1. INTRODUCTION 

We discuss tensor harmonics as elements of bases 
for subs paces of the function space of tensor fields on a 
manifold (in our case, Euclidean 3-space E3 or pseudo
Euclidean 4-space V4). These bases are bases for the 
finite-dimensional irreducible representations of a 
group of transformations on the manifold [in our case, 
the group is SO(3), the rotation group]. Di Sessal has 
given a compact account of the relation between 
tensor harmonics and Lie-group representations. The 
relationship' between the harmonics discussed by 
Mathews2 and by Regge and Wheeler3 is elucidated. 
We note that Lifshitz4 and Lifshitz and Khalatnikov5 

have given harmonic scalars, vectors, and tensors on 
the 3-sphere [where the appropriate group would be 
SO(4)], but their work has not yet been considered 
from the group-theoretical approach of di Sessa. The 
tensor harmonics to be discussed are useful in the 

. consideration of problems involving gravitational 
radiation considered as a perturbation on a spherically 
symmetric background geometry. 

2. TENSOR HARMONICS 

We proceed to construct rank-2 tensor harmonics 
as follows. We start with a basis for tensors of rank 2 
by taking the tensor product of vectors of the basis 
{e"" ey , ez}; that is, our basis is {e; ® ej ; i,j = 1, 3}. 
For simplicity, we denote the tensor product by 
juxtaposition, ei ® e; == eie;. Now the transformation 
of second-rank tensors under rotations gives a repre
sentation of the rotation group, but this representa
tion, as is well known,s is reducible to the sum of 
three irreducible representations j)(O), j)(1), and j)(2). 

The particular linear combinations of the tensor com
ponents which transform under these irreducible 
representations are, respectively, the trace, the anti
symmetric part, and the trace-free symmetric part of 
the tensor. 

These three bases are not the ones which refer to the 
usual matrices of j)(O), j)(l), and j)(2). To obtain the 
proper bases, we start with the spherical tensor basis 
for vectors {e+1' eo, e_ l }, form the tensor products 
ell ® ev , and use the Wigner coefficients to form the 
appropriate spherical tensor bases for rank-2 tensors: 

for j)(O), 

for 'D(l), 

(2) 

t+2 = e+1e+1' 
(2) -~( ) t+1 = 2 eOe+1 + e+1eO , 

t~2) = 6-t(e+1e_l + 2eoeo + e_l e+1)' for j)(2), 

t(2) - 2-~( + ) -1 - e_1eO eOe_1 , 

t~d = e_1e_l' 

We now take the products t~A) YLlIl , where A = 0, 1, 2. 
For A = 0, t~O)YJM transforms under j)(O) ® j)(J), 

which is trivially equivalent to 'D(J). These harmonics 
are denoted 

(1) 

For A = 1, we have a sum of three irreducible repre
sentations J, J + 1, and J - 1, and the appropriate 
harmonics are 

TJLw = I(L, M - 11-,1,11-1 L 1 JM)YL.M_llt~I), 
Il 

(2) 

where L = J, J + 1, and J - 1. For A = 2, we have a 
sum of five irreducible representations J, J ± 1, and 
J ± 2. The harmonics are 

T~iM = I (L, M - 1', 2, 1'1 L 2 JM)YL.M_pt~2). (3) 
Il 

The TnM were given by Mathews.2 We remark that 
the tensors divide into two parity types: T9!J±I.M and 

2203 
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T~:J±I,.l1 with parity (-IV+!, and T~lf' Tjl~M' 
T~h[, and T~:J±2,j\[ with parity (-IV. Borrowing 
terminology from electrodynamics and following 
Mathews, we call the tensor harmonics with parity 
(_I)J+l "electric" and those with parity (-IV 
"magnetic.' , 

We define the dot product of two tensors by 

(a ® b): (c ® d) == (a • c)(b • d). 
Thus, if 

then 

T: S = TiiSkl(ei' e")(e j • e l
) = THSklJ~J~ = TiiS;;

Now, YJMe;ej is orthonormal in the inner product 

(T, S) = II T*: S dO. 

Thus, our tensor harmonics are also orthonormal, 
since they are obtained by a unitary transformation 
from the set Y J Me; @ ej • The general covariant tensor 
function on the 2-sphere can be expanded in terms of 
TJ1, TYiM' and TnM which give the trace, anti
symmetric part, and trace-free symmetric part, re
spectively, of the tensor. 

We can find linear combinations of the tensor har
monics of a particular degree J which are expressible 
in somewhat simpler terms involving spherical har
monics and their derivatives. Thus, we will show 
that the quantities 

V/ilj YJM' LS;YJM , L;LjYJM' 
and 

XS;lJM' xjLjYJM , XiXjYJM (4) 

are independent linear combinations of the harmonics 
of degree J. We do this straightforwardly by writing 
L, V, and x in spherical tensor components: 

L±1 = 1=2-f(L", ± iLu), 

Lo = L z , 

1 (() iO) 
V±1 = =F l - ± - , 

2 ox oy 
j) 

Vo =-, 
OZ 

X±l = =F2-t(x ± iy), 

Xo = z. 

The spherical tensor components of a vector V are 
defined by V!, = el" V. Then, since e:. e. = <5/l' and 
(-l)l'e_1' = e; , we have the representation 

V = L (-l)/le_I'V/l' 
I' 

The action of each of these operators on Y J M is 
easily determined. We have the well-known formulas? 

LI'Ynf = (_l)J+M+/l+l[J(J + 1)(2J + 1»)i 

x (J 1 J
M

) YJ.M+I' (Sa) 
M +.u -.u -

and 
( _1)J+M+1' 

VI' YJ M = "--~-
r 

x [J(J + l)t(~ ~ _J
M
+ ~.u) YJ+l.M+/l 

+(J+l)J!(~ ~ _J;~JYJ_l'M+I'J. 
- (Sb) 

Now, noting that xI' = r(trr)iyll' and using the for
mula for the product of spherical harmonics found in 
Edmonds, 8 we obtain 

x/lYJM = r( -ll+M+I'+l 

X [(J + l)t(~ ~ }M+ ~ .u) YJ +1,M+1' 

- J*(~ ~ .!M-~ J YJ - 1,M+I'} (Sc) 

We define the spherical tensor components of a 
second-rank tensor Note that t().)*· t(a) = it ~ . /l '. V.\a I'y' 

Thus, ifT is any second-rank covariant tensor, let 

T (.\) = tW'T 
Il - I' •. 

Also, p.ote that t~)* = (_I)I'H t!!;. Thus, T has the 
representation 

T = I Y~)t~;')* = I ( -l)I'HT~.\)t~~. 
).." "'" 

Further ifT = U @ V then T(A) = (UV)().) where the 
, 'IJ I-' ' 

(UV)~.\) are the spherical tensor components of 
U @ V obtained by the usual angular-momentum 
coupling rules: 

(UV)~~ = U +1 V+1 , 

(UV)~~ = 2-i(UoY+l + U+1 Vo) , 

(UV)~2) = 6-i (U_1V+1 + 2UoVo + U+lV_1), 

(UV)~l = 2-1(u -1 Vo + U 0 V_l ) , 

(UV):2i = U -1 V_l , 

(UV)W = 2-f(UOV+l - U+1VO), 

(UV)~l) = 2-*(U -1 V+l - U +1 V_1) , 

(UV)~l = 2-i( - U ° V_l + U -1 Vo), 

(UV)ri°) = 3-*(U_lV+l - UoVo + U+lV_1)· 
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Let P and Q denote two of the vector operators 
L, V, and er • Then, the tensor operator P @ Q may 
be expressed in terms of its spherical tensor components 

(PQ)~~ = P +lQ+l, 
.. (2) -I 

(PQ')+l = 2 (POQ+l + P +lQO)' 

etc., being careful to order the operators properly. 
Utilizing the action of the operators V Il' L Il , and xil 

on YJM as given by Eqs. (5) together with the ex
pressions for the second-rank tensor operators in 
spherical tensor components, we may now write down 
the relation between the tensor harmonics (3) and 
the expressions (4). 

We now restrict our attention to symmetric tensors 
with trace. There are clearly six such tensor harmonics: 
the five trace-free harmonics TnM' where L = J, 
J ± 1, J ± 2, and the trace T~1. We summarize the 
results of operating on Y J M with L, V, and er in six 
possible ways as follows (let the subscript s denote the 
"symmetric part with trace"): 

[VVYJM]s 

= 1. J(J + 2)( (J + 1)(J + 2) )\(2) 
r2 (21 + 1)(21 + 3) J.J+2.M 

. ! 
+ 1. J(J + 1)( 2J(J + 1) ) T(2) 

r2 3(2J - 1)(2J + 3) JJM 

+ ~ (J + 1)(J - 1) 
r 

x [J(J - 1)(2J - 1)(2J + 1)]IT~?J_2.M 

+ (~)3-IJ(J + 1)T~k, (6a) 

[LLYJM]. = [V(J + 1)(21 - 1)(21 + 3)]IT~jM 
- rIJ(J + 1)T~k, (6b) 

[ Y] ( (J + 1)(J + 2) )IT(2) 
erer JM. = (2J + 1)(2J + 3) J.J+2.M 

+ ( 21(J + 1) )1 T(2) 
3(2J - 1)(21 + 3) JJM 

( 
J(J - 1) )1 T(2) 

+ (2J - 1)(21 + 1) J.J-2.M 

- 3-iT~k, (6c) 

0 _1 oYJM 
r 00 

[VVYJM]. = * 
a2YJM 

002 

[erVYJM]S = 1 [J(J + 1)]1 
r 

[( 
J(J + 2) )IT(2) 

X - (2J + 1)(2J + 3) J.J+2,M 

- 3[6(2J - 1)(2J + 3)]-IT~jM 1 
+ ( (J + 1)(J - 1) ) T(2) 'J' 

(2J - 1)(2J + 1) J,J-2.M' 

(6d) 

[LVY - __ ! J(J(J + 1)(J + 2»)1 T(2) 
JMJ. - r 2(21 + 1) J,J+l,M 

_ !(J + 1)(J - 1)J(J + 1»)1 T(2) _ , 

r 2(2J + 1) J,J I,M 

(6e) 

[erLYJM]s = [V(J + 1)]1[( (J + 2»)\J(2)J+l M 
(2J + 1) , , 

- (J -1»)lT(2) ] (6f) 
(2J + 1) J.J-l,M· 

Thus, the symmetric parts of the four tensors LL Y J M' 

VVYJM , ererYJM , and erVYJM , which have parity 
(-IV ("magnetic"), and the two tensors LV YJ2lof 

and erLYJM , which have parity (-IV+1 ("electric"), 
will suffice to represent an arbitrary symmetric tensor 
on the 2-sphere. 

We now write explicit expressions for [VV YJM]s, 
[LLYJM]., and [LVYJM]. in spherical coordinates. 
In each operator, we use covariant derivatives in the 
spherical coordinate system. Tlw.s, the (ij) component 
ofVVYJM is 

YJM:;:; = VSiYJM , 

the Cij) component of LV Y J M is 

LV Y . -1 kIn - V Y . ky 
t j JM = -/gikg E Xl n JM = -lrEi JM:i:k, 

where 

Ei = sin 0 and E: = -1/Csin 0). 

Finally, the (ij) component of LL Y J M is 

-rE~VkrE;V!YJM' 

In the fallowing formulas, components determined by 
the symmetry of the tensor are denoted by *: 

_! oYJM 
r or/> 

!XJM (7a) 

* * e2y 

) - 0:: + J(J + 1)YJM sin2 
() 
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where 

and 

eM [ererYJM]s = ~ 

[e,VYJ MI, ~ { 

[e,LYJMI. ~ M{ 

o 

* 

* 

o 

* 

0 

0 

0 
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1 . OOYJM _ sinOoYJM -sm --
r or/> r 00 

1 
--.-XJM 

sm 0 
(sin O)WJM 

* (sin O)XJM 

!oYJM 
r 00 

* 

~). 
oYJM 

OYJM) 00 or/> 

0 o ' 
0 0 

_1 oYJM -(,in Ol(OYJM)) 
sin 0 or/> 00 

o 0 ' 

0 0 

XJM = 2 ~(~ - cot 0) YJM 
or/> oe 

w - - - cot e - - -- -- Y ( 
a2 a 1 a2 ) 

JM - 002 ( ) 00 sin2 0 Or/>2 JM' 

! oYJM 
r 00 

(7b) 

(7c) 

(7d) , 

(7e) 

(7f) 

It is now clear that we can separate these into three 
tensors, which are orthogonal to the 2-sphere, and 
three tensors, which are tangent to the 2-sphere. The 
three orthogonal to the 2-sphere (one electric and 
two magnetic) are 

en! = r 2{[VVYnl]s + (2/r)[erVYnl]s}, (9b) 

hJJ! = [LLYn!]. + r[erVYJJI]s' (9c) 

By looking at the expressions for these quantities in 
terms of TYllll and also the explicit representations 
(8) and (9), we see that all the inner products between 
the different quantities in (8) and (9) vanish except for 
the inner product of eJ M and hJlII . However, the 
sum and difference of these give two orthogonal har
monics 

aJM = [ererYJMls, (8a) 

bJM = 2!r[J(J + l)]-![erVYJM]", (8b) 

CJM = 2![J(J + l)]-![erLYJM]s' (8c) 

Those tangent to the 2-sphere (one electric and two 
magnetic) are 

dJM = 2tr[J(J + 1)(J - 1)(J + 2)]-t 

x ([LVYJ1u]s + (1/r)[erLYn!]g}, (9a) 

fJM = [2J(J + 1)(J - 1)(J + 2)r!(enl + hnf), 
(lOa) 

gJM = -[2tJ(J + l)]-l(eJM - hnf)· (lOb) 
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Note that 

gJ M = (~~ ~) Y J M, 

° ° sin
2

8 

fJM = r2[2J(J + l)(J - 1)(J + 2)]-t 

x (~W~M X~M)' ° * -(sin
2

8)WJM 

dJM = -ir2[2J(J + l)(J - l)(J + 2)]-t 

x (~ -(1/sin08)XJM (sin 8)WJM). 

° * (sin 8)XJM 

Thus, {aJM , bJM , crM, dJM , gJM' f JM } is an ortho
normal set of tensor harmonics, distinguished by 
parity and by whether they are tangent or orthogonal 
to the 2-sphere. Note that, of the harmonics tangent to 
the 2-sphere, the electric harmonic dJM and the 
magnetic harmonic f J M are trace-free. These are, in 
fact, the transverse traceless electric and magnetic ten
sor harmonics TY1 and Tj1i given by Mathews, 2 

as can be seen by writing them in terms of the TnM 
harmonics 

d T (e) 

JlIl = - JM' 

f T (m) 
JM = JM' 

Note that bJ M and CJ M are zero for J = 0, while 
dJ M = - TY1- and fnl = Tl'~ are zero for J = ° 
and J = 1. For gravitational radiation in the radiation 
field, dJ .'1-1 and fJ M are the significant harmonics. 

These harmonics can be identified with the decom
position given by Regge and Wheeler.3 However, their 
set consisted of the harmonics aJ M' b J iII' CJ M, dJ 111 , 

e J M, and gJ M' This is not an orthogonal set, since 
(eJM , gJ1I1) -j6 0. 

Up to now, we have considered tensors on a 2-
sphere embedded in a 3-dimensional Euclidean space. 
Let us extend these tensor harmonics to tensors in a 
4-dimensional pseudo-Euclidean space. We have three 
harmonics lying in the 2-spheres and, in 3-space, we 
have three additional harmonics orthogonal to the 2-
spheres: [ererYnI]s, [erVYnI]s, and [erLYJM]s' Let 
e t denote the covector which is identified with the unit 
tangent vector along the time direction by means of the 
pseudo-Euclidean metric. Split the tensor space at each 
point of V4 into the direct sum of the tensor space 
tangent to the Euclidean subspace E3 plus the space 
spanned by ret ® e t } <:B ret 0 ei ; i = 1, 3}. 0 means 
symmetric tensor product. Clearly, {e t ® et } is in-

variant under SO(3), while {et 0 ei ; = 1, 3} trans
forms like a vector basis. Thus, we write 

3 3 

T = ! T;,.ei ® e,. + ! TOiet 0 ei + Tooet ® et. 
i.; i=l 

Thus, a tensor field is the direct sum of three terms: 
The first term can be expanded in terms of the pre
viously described harmonics, the second term can be 
expanded in et ® Y JLM , which is a basis for ~(O) ® 
~(J) == ~(J), and the third term can be expanded in 
et ® Y J M,e t = etet Y J M, which is a basis for ~(O) ® 
~(O) ® ~(J) == ~(J). 

Let fl, 'V range from ° to 3; let ell be the basis of 
covectors in Minkowski space. (Thus, in natural 
coordinates which we have been using, eO = e

t
, 

e1 = ex, e2 = ey, and e3 = ez .) Then {ell ® eV
} is a 

basis for covariant tensors and, if 

then 

where rr = {-I, +1, +1, +1}. As before, we de
fine 

(T,S) =ffT*:Sdn. 
The four additional harmonics are 

(0) _ [ 
aJM = etetYJM]s, 

(1) _ t. 
aJM = 2 l[eterYJM]s, 

b~!w == 2!ir[J(J + l)]-![etVYJM]s, (11) 

C~~lI == 2~i[J(J + l)]-![etLYJilI]S' 

Any symmetric covariant tensor can be expanded in 
terms of the harmonics (8), (9a), (10), and (11): 

B(O) (0) + JMbJM + BJMbJM 

+ Q~~Ic~lI + QJMCJM 

+ GnIgJM + DJMdJ1I1 + F JMhJM], 

where the coefficients AJ 1II, B J 1II, ••• are functions of 
rand t. In the Regge-Wheeler set of harmonics, eJ •lI 
is used in place of f J .'11 • 

3. CONCLUSION 

This formalism is useful in the solution of the 
equations for linear perturbations from a spherically 
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symmetric background geometry. In particular, the 
orthogonal set of tensor harmonics enables one to 
solve such perturbation equations in the case where 
there is a source term. The author treats the problem 
of a particle falling in a Schwarzschild background 
geometry in his Ph.D. thesis. 9 The static and stationary 
parts of the gravitational field produced by the 
falling particle are given by the J = 0 and J = I 
harmonics, while the radiation is described by the 
J ~ 2 harmonics. Other possibilities suggest them
selves: the interaction of electromagnetic fields with 
the gravitational field and the perturbations pro
duced by continuous distributions of matter (dust) on 
a spherically symmetric background. 
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We derive the most general form of the Schrodinger equation for two interacting particles in an external 
field which can be separated by a linear transformation of the coordinates. In particular, the transforma
tion to center-of-mass and relative coordinates is shown to separate only those Hamiltonians with external 
potentials of the 3-dimensional harmonic oscillator type. The most general allowed form contains in 
addition specified cubic terms in the potentials. 

1. INTRODUCTION 

Consider the Hamiltonian 

H(Xl' x 2) = -(2ml)-1~1 - (2mz)-1~2 + VI (Xl) 

+ V2(X2) + V3(XI - X2) (1) 

of two interacting nonrelativistic massive particles in 
an external field. The question arises whether H(XI' x z) 
is equivalent to the sum of two commuting I-particle 
Hamiltonians 

H(XI' xz) = HI (Xl) + HZ(X2) = UHU-l, (2) 

the equivalence transformation being induced by a 
linear coordinate transformation. (Instead of linear 
transformations we could as well consider arbitrary 
transformations which leave the kinetic energy diag
onal.) H is called separable H E S if such a decom
position is possible. Talmil noted that for equal-mass 
particles and central potentials V(r) H separates under 
a transformation to center of mass and relative 

.coordinates only if VI(r) = V2(r) = tKr2 + const. He 
and othersl - 4 have used this to discuss nuclear prob
lems outside closed shells; Kestner and Sinanoglu6 

have used the same separability in a discussion of 2-
electron atoms. It is the purpose of this note to find 
all separable Hamiltonians of the form (1) where the 
potentials V are elements of the space of the distri
butions ~'.6 

Our principal interest lies in the classification of the 
potentials Vex) of HE S and we do not care about the 
detailed form of HI (Xl) and Hz(xz). If there is a linear 
coordinate transformation T at all separating H, then 
there is a class equally acceptable which we get by 
multiplying Twith all possible rotations and dilatations 
of the coordinates Xl and Xz separately. It is therefore 
enough to consider for H the special form 

B(YI' Yz) = - (2,u)-1(~1 + ~z) + 'OICA) + 'Oz(yz) , 

,u = mlm2/(ml + mz)· (2') 
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The Hamiltonian (1) is of the form, up to a trivial 
dilatation, 

+ U2(h) + U3(rt:Yl - (3Y2), 

rt: = (ml :2 mJ, {3 = (ml :1 mJ, (1') 

1 
Y2 = (J X 2 • 

The problem reduces therefore to finding all Hamil
tonians H of the form (1') which can be transformed 
into n as defined by (2'). If we consider the kinetic 
parts of Hand n so defined, we realize that the set of 
all possible linear coordinate transformations now 
reduces to the rotations 0(6) in Yl and Y2' 7 

It is convenient to begin with the physical situation 
of separability in a transformation to center of mass 
and relative coordinates. In this case 

(3) 

and there is no restriction on its form; VI and V2 

must be quadratic functions whose leading coeffi
cients are related. We then consider the case of more 
general transformations and find that cubic functions 
are now also allowed for VI and V2 at the expense of 
restricting V3 to be a related cubic function. s 

2. THE CENTER-OF-MASS CASE 

In this section we use the transformation to the 
center of mass and the relative coordinate of the par
ticles to identify a large number of potentials. The char
acteristic property of this simple transformation is that 
it places no restrictions on the form of V3: 

Theorem 1: The Hamiltonian (1) can be separated 
by the coordinate transformation 

T
o

.
m

• : (Xl) -+ (~l = M-I(mIXI + m2x2») , 
X 2 X 2 = Xl - X 2 

M = ml + m2 , (4) 

if the potentials VI and V2 are of the form 

VI = rt:-2aikxix~ + blXI + c, 

V2 = (3-2aikx~x~ + h;xi + c'. (5) 

Conversely, if VI and V2 are elements of6 ~' and H can 
be separated by To.m . , then VI and V2 are of the form 
(5) with no restrictions on the constants. 

Proof: 
(i) To prove the theorem,it is simpler to use instead 

of (1) and (2) the corresponding forms (1') and (2'). 

Expression (4) will change to 

To.m . : (YI) -+ (~I = (3YI + 1XY2), 
h Y2 = rt:YI - (3h 

which is obviously a rotation in the coordinates YI and 

Y2' 
(ii) The first part of the proof can be checked by 

simple calculation. We therefore concentrate on the 
second part and assume 

Ul(Yl) + U2(Y2) + UaCrt:Yl - (3Y2) 

= OI({3YI + rt:h) + 02(rt:Yl - (3Y2)' (6) 

Since U3 is of the same form as U2 , it is enough to 
discuss the functional equation 

UI(h) + U2(Y2) = Ol({3h + rt:Y2) + 02(rt:YI - (3h)· 

(6') 

(iii) We show that Ui and Oi are smooth functions. 
Smear the equation (6') with a test function cP E ~ in 
the variable Yl: 

f dYICP(Yl)UiYl) + U2(Y2) f dYlCP(Yl) 

= f dYlCP(Yl)Oi(3Yl + rt:Y2) 

+ f dhCP(Yl)02(rt:Yl - (3Y2)' 

On the left-hand side we have a linear form in U2(Y2) 
and on the right-hand side two integrals of the con
volution type. The assertion follows from the fact that 
a convolution of cP E ~ with f E~' is smooth.9 A 
similar argument works for U1 , 01 , and O2 , 

(iv) Since. the differentiability of the U's has been 
established, we can apply the operator 

Dik = ~. ~, i, k = 1,2,3, (7) ay; ay~ 
on (6'). Since the left-hand side will vanish for all i and 
k, one obtains 

a2 01 a2 02 --=--
aYiay~ ay~ay~ 

Since U1 and U2 are functions of independent variables, 
the last expression has to be a constant 2aik and there
fore 

01 = aikYiY~ + dlY~ + e, 
O2 = aikYiY~ + flY~ + g, 

from which (5) follows. 

With a rotation the quadratic terms take the form 
t(klX2 + k2y2 + kaz2); i.e., three I-dimensional os
cillators of different spring constants. The separability 
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of this type of potential has been exploited by 
KriegerlO in work on 2-particle states in a deformed 
nucleus. If the masses ml ¥- m2, it should be noted 
that (5) requires that the particles be in potentials 
which differ as their masses. This is not likely to be 
realized in situations of physical interest. However, 
it is possible that the difference from this situation is 
small compared to all the potentials of the problem 
and can consequently be treated with perturbation 
methods. This approach has been followed by Anan
thanaryananll in discussing a A particle and a nucleon 
in a hypernucleus. 

3. THE GENERAL CASE 

In the previous section we considered the Hamil
tonians which could be separated by the special 
coordinate transformation Tc.m.(4). Now we are look
ing for all separable Hamiltonians HE S. We have 
seen it is sufficient to consider the potential part of H 
and restrict the transformations to the rotations 0(6) 

in Yl' Y2' 
To simplify the diSCUSSIOn we introduce the follow-

ing equivalence relation [not the usual equivalence 
relation of Eq. (2)] between Hamiltonians: 

R l , R2 E 0(3). (8) 

In each class of separable Hamiltonians (with respect 
to the equivalence relation "'-'), there is a representative 
of the form specified below. 

Theorem 2: Let the 6-dimensional vector space 
W = {(Xl' X 2)} be decomposed in three 2-dimensional 
subspaces 

W W rL\ W. ffi W. r;r~ = {(Xl
/W, Xk

2
U»}, = 1 W 2 W 3, rr, 

i = 1,2,3. (9) 

The Hamiltonian H(l) can be separated by the coordi
nate transformation T reducing, according to (9), to 

if the potentials are of the form (with an arbitrary 
linear and a constant term and parameters Xi' Ai, fli' 

. Vl(Xl ) = ! [XiK(O(, ,8, Ai' fli)(0(-lX~!i»3 
i 

+ L(O(, ,8, Ai, fli' ai' bi)(0(-lX~(;)2], 

V2(X2) = ! [XiK(,8, -0(, Ai, fli)(,8-1X~(i)3 
i 

+ L(,8, -0(, Ai, fli' bi , ai)(,8-1x~(;)2], 

Va(x1 - X2) = ! 1.;/1; [Xi(X~(i) - x~(i)t 
i 0(,8 

+ (ai - bi)(X~W - X~(i)2], (10) 

K(O(, ,8, A, fl) = ,8-1[0(,8(1.2 - fl2) + Afl(,82 - 0(2)], 

L(O(,,8, A, fl, a, b) = aA2 + bfl2 - O(,8-l(a - b)Afl. 

Conversely, if the Hamiltonian H' is separable and the 
potentials V~, V~ , and V~ are elements from6 ~ then 
H' is equivalent to H (H' "'-' H) with potentials having 
the form (10). 

Proof: 
(i) Again, the first part of the theorem is a straight

forward algebraic calculation, and we consider the 
second part. Suppose 

U;(y{) + U~(y~) + U~(O(y; - ,8y~) = 01(A) + 02(Y2), 

(;:) =RGD, REO(6). (11) 

Lemma: For a given rotation R E 0(6) there exist 
S E 0(3) EEl 0(3) and Q E 0(3) EEl 0(3) such that 
N(R) = SRQ is a direct sum of three 2-dimensional 
rotations Ti • 

In an appendix we will reformulate the lemma in a 
more abstract and more transparent manner and give 
a proof. Now we consider again the Eq. (II) but using 
N(R) instead of R. With our definition of equivalence, 
there are equivalent potentials U and 0 such that 

U1(Yl) + U2(Y2) + U3(O(YI - ,8Y2) 

= Ol(A) + O2 (Y2) , (11/) 
where 

Y = N(R)y. 

Since N is the direct sum of three 2-dimensional rota
tions, it is enough to consider the problem just in one 
of the three 2-dimensional subspaces Wi,k [we do not 
indicate the dependence on (i, k)]: 

U1(Yl) + U2(Y2) + Ua(O(Y1 - (JY2) 

= Vl(AYl - flY2) + V2(flYl + AY2), 

1.2 + fl2 = 1. (11") 
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(ii) By a similar argument,as in the proof of Theo
rem 1, the U's are smooth functions in Yl' Y2' (We as
sume that the present situation is different from the 
one covered by Theorem 1.) 

(iii) We apply the operator 

({J~+lI.~)~~ OYl oY2 OYl OY2 
on Eq. (11/1). The left-hand side vanishes and therefore 
(assume that A/-l ¥- 0) 

({JA - lI.ft)ut = (lI.A + /-l{J)U~' 
= 6({JA - lI./-l)(lI.A + {J/-l)X, 

with the solutions (up to linear and constant terms) 

OleYl) = X(lI.A + (J/-l)Y~ + ayi, 
02(Y2) = X(fJA - lI./-l )y~ + b y~ . 

In terms of the U's this gives (still for one pair of 
variables, say Y~Y~) 

Ul(Yl) = XK(lI., (J, A, /-l)Y~ 
+ L(lI., (J, A, /-l, a, b)yi, 

U2(Y2) = XK({J, -lI., A, /-l)Y~ 
+ L«(J, -lI., A, /-l, b, a)y~, 

U3(lI.Yl - fJY2) = (A/-l!lI.{J)[X(lI.y! - {JY2)3 
+ (a - b)(lI.Yl - fJY2l]. (12) 

From this, Eq. (10) follows. 

4. CONCLUSIONS 

We have shown that the Schrodinger equation for 
two interacting particles (1) can be separated by the 
transformation to the center- of-mass and relative 
coordinates only for external harmonic oscillator 
potentials V1(Xl ) , V2(X 2). The quadratic terms of VI 
and V2 have to be the same up to a factor (ratio of the 
masses). There is no restriction on the interaction 
V3(X1 - X2)' For central symmetric potentials(spring 
constants independent of space direction), this is a 
result of Talmi. 

We have further shown that the most general 
Hamiltonian which allows for a separation by a 
linear coordinate transformation is of the type (1), 
(10) up to arbitrary linear transformations in Xl and 
X2, separately. The external as well as the interaction 
potentials contain specified cubic terms in addition to 
the quadratic terms; no other terms are allowed. 

APPENDIX 

We reformulate the lemma used in Sec. 3 and 
provide a proof. The following notations and facts 
will be used: 

(1) Let W be a 6-dimensional linear vector space 
with the basis e1 , e2 , e3 ,fl,f2, f3, and let 0(6) be 
the rotation group acting in W. There is a subgroup 
0(3) EE! 0(3) of 0(6) acting in WI = (e1 , e2' e3 ) and 

W2 = (/l,f2 ,f3), separately. We will also use the 
decomposition of W into the 2-dimensional subspaces 

Wik = (e;/k)' 
(2) Two elements of 0(6) are called equivalent 

A R::! B iff there exist RI , R2 E 0(3) EEl 0(3) such that 
A = R1BR2 • A is contained in the equivalence class 1-

(3) Consider the matrix function M(A) = AgAT, 
g = 1 EE! (-1) E 0(3) EE! 0(3). Then the equivalence of 
A and B implies the similarity of M(A) and M(B); 

A = RIBR2 => M(A) = RIM(B)Rf. 
(4) M(A)2 = 1. 

The lemma then reads as follows: 

Lemma: Each equivalence class A in 0(6) contains 
a characteristic rotation N(A) which reduces according 
to a decomposition of W into three 2-dimensional 
subspaces W ik • 

Remarks: 
(l) The decomposition of W into 2-dimensional 

subspaces is not unique. 
(2) The introduction of the matrix function M(A) 

will reduce the problem between equivalent matrices to 
similar matrices and "pick the part of A out which is 
alien to 0(3) EEl 0(3)." 

Proof: 
(a) Consider A E 0(6). Then by (3) and (4), 

M(A) E 0(6) and M(A)2 = 1. This is enough to show 
explicitly that there exists R} E 0(3) 8) 0(3) such that 

M(A) = R 1M(N)R'{, 

where N is a characteristic rotation of 1-
(b) By definition 

AgAT = RIN gNTR'{, 

A = R1NR2, R2 = gNTR'{ Ag. 

Now it can be easily verified that 

R 2gRr = g. 

But since R2 is also a rotation it has to be in 0(3) EEl 
0(3). 
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We review spatially homogeneous, axially symmetric universes containing either an ideal fluid (with a 
y-law equation of state) or a uniform magnetic field parallel to the symmetry axis or both. In many cases, 
the field equations may be solved by the technique (described in detail) of replacing the cosmic time by 
a suitably chosen timelike parameter. We systematically derive all known exact solutions for such 
universes. 

I. INTRODUCTION 

In recent years, experimental studies of the isotropy 
of the cosmic microwave radiationl and speculations 
about the amount of helium formed in the primordial 
fireball,2 about cosmic magnetic fields,3-6 and about 
the effects of neutrino viscosity in the primordial 
firebaII7.8 have all stimulated theoretical interest in 
anisotropic cosmological models,7-15 and a large 
number of exact solutions have been obtained. 

In this paper, we review three classes of spatially 
homogeneous, axially symmetric space-times which 
contain an ideal fluid obeying a y-law equation of 
state and in which there is a uniform magnetic field 
parallel to the axis of symmetry. We systematically 
derive all known exact solutions of these classes, 
showing explicitly how the coupled Einstein field 
equations may be linearized and separated, using the 
same notation throughout. 

We consider space-times having the metric forms 

ds2 = d72 _ f2(7) dX2 _ S2(7)(;~2 g:~ 
d'£,2, (lc) 

where 
dQ.2 = d()2 + sin2 () dcp2, (I/a) 

dl2 = d'Yj2 + d,2, (l'b) 

d'£,2 = d()2 + sinh2 () dcp2, (l/C) 

where (), cp, 'Yj, and, are dimensionless ("angular") 
coordinates. These metric forms were first investigated 
in detail by Thorne.4 •5 In each of these space-times, 
families of timelike world lines along which all three 
space coordinates are fixed form geodesic congruences 
orthogonal to the spacelike hypersurfaces along which 
7 = const. Throughout this discussion, the magnetic 
field is assumed to be directed along the X axis. 

The symmetries of each of these space-times may 
be described by four spacelike Killing vector fields. 
(These are the generators of the respective isometry 

groups acting on these space-times.) In terms of the 
coordinates used in (1), the Killing vector fields are, 
respectively, 

~al = ..E.., ~a2 = sin cp 1. + cot () cos cp ..E.. , 
ocp o() ocp 

~a3 = cos cp 1. - cot () sin cp..E.., ~a4 = ~, (2a) 
~ ocp ox 

a a a 
~bl = 'Yj 0, - , 0'Yj' ~b2 = 0'Yj , 

a a 
~b3 = 0,' ~b4 = OX' (2b) 

~Cl = -cos cp ~ + (coth () sin cp - 1)..E.., 
o() ocp 

~c2 = sin cp 1. + coth () cos cp ..E.. , 
o() ocp 

~C3 = cos cp ~ - (coth () sin cp + 1)..E.., 
o() ocp 

a 
~C4 = -. 

ox 
(2c) 

The corresponding Lie algebras are specified by the 
following commutation relations, respectively: 

[~al' ~a2] = ~a3' 

[~a4' ~aIl = 0, 

[~bl' ~b2] = ~b3' 

[~b4' ~bl] = 0, 

[~Cl' ~c2] = ~cl' 
[~c4' ~Cl] = 0, 

[~a2' ~a3] = ~al' 
[~a4' ~a2] = 0, 

[~b2' ~b3] = 0, 

[~b4' ~b2] = 0, 

[~C2' ~c3] = ~c3' 
[~C4' ~C2] = 0, 

[~a3' ~al] = ~a2' 
[~a4' ~a3] = 0, 

(3a) 

[~b3' ~bd = -~b2' 

[~b4' ~b3] = 0, 
(3b) 

[~C3' ~cl] = 2~c2' 
[~C4' ~C3] = 0. 

(3c) 

In each case, the Killing vector field ~4 is the gener
ator of spatial translations parallel to the axis of 

2212 
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symmetry (the X direction). The Killing vector fields 
~1' ~2' and ~3 are generators of rotations about the X 
axis and/or spatial translations normal to the X axis, 
and are tangent to the 2-dimensional subspaces on 
which T = const and X = const. These subspaces are 
surfaces of constant curvature with line elements 
proportional to (l'a), (l'b), or (l'c), which are the 
line elements, respectively, of the sphere (positive 
curvature), the plane (zero curvature), and the 
pseudo sphere (negative curvature). 

The components of the Riemann tensor relative to 
the orthonormal tetrads of I-forms 

w~ = dT, w! =f(T) dX, 

w! = SeT) de, w~ = SeT) sin e dc/>, (4a) 

w~ = dT, w~ =f(T)dX, 

wg = SeT) d1], w~ = SeT) d~, (4b) 

w~ = dT, w~ =f(T) dX, 

w~ = SeT) de, w~ = S(T)sinhedc/> (4c) 

may be computed for the corresponding metric 
forms (1) by Misner's prescription.I6 The Einstein 
tensor is found to be diagonal; consequently, if the 
stress-energy tensor is to represent an ideal fluid and 
a magnetic field parallel to the X axis, the fluid must 
be comoving with the spatial coordinates (X, e, c/» or 
(X, 1], ~). The Einstein field equations without 
cosmological constant are then 

S( I S) € 2 Goo = - 2 - + - - - = K(fl + lH ) 
S f S S2 ' 

(5) 

Gu = -2 §. - (§:)2 + .!... = K(p _ tH2) (6) 
S S S2 ' 

j Is s 2 
G22 = G33 = - j - f S - S = K(p + tH), (7) 

Gap = 0, for (J.::;6 fl, (8) 

where K = 87TG/C4 is the relativistic gravitational 
constant, fl is the proper, density of the ideal fluid, p 
is the proper stress (pressure) of the fluid, H is the 
magnetic field, and € = -1, 0, or + I, according to 
whether (1a), (1b), or (Ic) is chosen. Derivatives with 
respect to T are denoted by a dot. 

The Maxwell equations for a magnetic field parallel 
to the X axis may also be expressed in terms of the 
orthonormal tetrads17 (4); these equations are 

fI + 2HS/S = 0, j-lH' = 0, (9a) 

where the prime denotes differentiation with respect 
to x, and may be integrated straightforwardly to give 

H = Ho/S2, (9b) 

where Ho is a constant of integration having the 
dimensions of magnetic flux. We recognize (9b) as a 
statement of the Gauss theorem: The magnetic flux 
threading any closed spacelike loop is invariant if that 
loop is comoving with the spatial coordinates. 

The explicit forms of the conservation laws plY, = ° 
may be obtained by the usual tensorial method~v. The 
resulting equations are 

tl + (fl + p)(j1J + 2S/S) = 0, (10) 

j-lp' = 0, (11) 

while the remaining two equations are trivially satis
fied because of the symmetries of the metric forms (1). 
Equation (11) could also have been obtained by 
inspection from the field equations (5)-(7) together 
with the integral (9b) of the Maxwell equations; 
from the form of these equations, it is clear that fl 
and p are functions only of T. 

If the equation of state has the form 

p = (y - l)fl, fl + p = Yfl, 1 ~ Y ~ 2 (12) 

(the y-Iaw equation of state),IB.19 then the conserva
tion law (10) may be integrated to give 

fl = flO/(fS2)y, P = (y - 1)flo/(fS2)y, (13) 

where flo is a constant of integration. Inserting (9b) 
and (13) into the Einstein field equations (5)-(7), we 
obtain 

(14) 

(15) 

(16) 

where q2 == lKH~. This is the system of equations we 
study in this paper. Although there are three field 
equations for the two functions jeT) and SeT), it 
follows from the Bianchi identities that only two of 
these are independent. 

II. DYNAMIC MAGNETIC UNIVERSES 

We first consider universes containing only a 
magnetic field. Setting flo = 0, we see that (15) then 
contains only S: 

25 + S-I(S)2 = (q2/S3) + (E/S). (17) 

Since the independent variable T does not appear 
explicitly, we may regard Sand S as functions of S 
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rather than T. If we define a new dependent variable 
g by 

then 
g(S) == SeT) = S(S(T» = S(S), (I Sa) 

S(S) = g dg 
dS 

(18b) 

and (17) becomes a Bernoulli equation for g which 
has the solution 

g = dS = ± (I: + C _ ~)! (19) 
dT S S2' 

where C is a constant of integration. 20 

A second integration now gives S as an implicit 
function of T for each value of 1:: 

HD2 - (2S - C)2]k + iC cos-1 «2S - C)/ D) 

=T-TO, 1:=-1, (20a) 

(2/3C2)(CS + 2q2)(CS - q2)! = T - TO, I: = 0, 

(20b) 

H(2S + C)2 - D2]! - iCcosh-1 «2S + C)/D) 

= T - TO, I: = +1, (20e) 
where 

(21) 

and TO is a (physically trivial) constant of integration. 
In principle, we could now insert these results in 

either (14) or (16) and integrate the resulting linear 
differential equation for I; in practice, it is more 
convenient to express the solutions (20) in parametric 
form and then to rewrite (14) or (16) in terms of the 
parameter. The solutions (20a) and (20c) suggest the 
"natural" parameters 

1p == cos-1 «2S - C)/D), I: = -1, (22a) 

1p == cosh-1 «2S + C)/ D), I: = + I, (22c) 

respectively, so that 

S(1p) = iC + tD cos 1p, T - TO = tC1p + tD sin 1p, 

I: = -1, (23a) 
S(1p) = iD cosh 1p - iC, 

T - TO = tD sinh 1p - lOp, I: = +1. (23c) 

[Note that (20a) and (23a) describe a cycloid in the 
(S, T) plane.] 

The solution (20b), however, does not suggest any 
"natural" parameter. But we note from (23) that the 
parameters (22) satisfy, in each case, the relation 

d1p = dT/S. (24) 

(This relation between the parameter 1p and the 
cosmic time T is analogous to that between the time
like conformal coordinate sometimes used in dis
cussions of Robertson-Walker cosmological models21 

and the cosmic time in those models.) If 1p is used as 
the timelike coordinate instead of T, the metric forms 
(1) become 

ds2 = S2(1p) d1p2 - f2(1p) dX2 - S2(1p) dl2 (25b) 
{

dQ,2 (2Sa) 

d'f,2. (25c) 

To transform independent variables in any of our 
differential equations from T to 1p, we must replace 
the operators d/dT and d2/dT2 by 

dId d
2 

1 ( d
2 

S' d) 
dT -+ S d1p' dT2 -+ S2 d1p2 - S d1p , (26) 

where the prime denotes differentiation with respect 
to !po Upon transforming (19) and integrating it anew, 
we obtain 

S(1p) = tC1p2 + q2/C, T - TO = IJ7jC!p3 + (q2/C)!p, 

I: = 0, (23b) 

as the parametrized form of (20b). In this case, 

1p == (2/C)(CS - q2)k. (22b) 

The field equation (14) now becomes 

I' + t{[(S')2 - I:S2 
- q2J/SS'}f = 0, (27) 

and we readily obtain 

1(1p) = Esin !p/(C + D cos 1p), 

I(!p) = E1p/(C2!p2 + 4q2), 

f(1p) = E sinh 1p/(D cosh 1p - C), 

where E is a constant of integration. 

I: = -I, (28a) 

I: = 0, (28b) 

I: = +1, (28c) 

The metric (23a) , (25a) , and (2Sa) describes the 
intermediate region r1 < r < r2 of the Reissner
Nordstrom solution22 

where 

2m q2 
<I>(r) = 1 - - + -, 

r r2 
(29') 

as extended by Graves and Brill,23 where 

r1 = m - (m2 - q2)! = HC - D), 

r2 = m + (m2 - q2)! = HC + D). (30) 

The apparent singularities in (28a) for 1p = mr 

correspond to the fact that the hypersurfaces r = 
const become null as, -+'1 or, -+'2' 

The metric (23b) , (25b), (28b) is the axially sym
metric purely magnetic special case (in a different 
notation) of the general Bianchi type I solution 
found by Rosen for a universe containing only 
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electromagnetic fields24 parallel to one of the co
ordinate axes. lacobs13.14 also gives Rosen's solution 
in a different form. 

Bianchi type I space-times have the metric 

ds2 = dt 2 - A2(t) dx2 - B2(t) dy2 - W2(t) dz2, 

and have been examined most systematically by 
Jacobs.13.14 For the special case A(t) == B(t), this 
metric reduces to the form (1 b), i.e., that of a spatially 
homogeneous axially symmetric quasi-Euclidean 
space-time. 

This solution was also obtained by Brill25 (in a 
different notation), who has also discussed its analytic 
extension beyond the apparent (coordinate) singularity 
at 1J! = 0, S = Scrit == q2/C. If S is permitted to 
decrease below Scrit, then we see from (22b) and 
(28b) that both 1J! and f(1J!) become pure imaginary. 
Inspection of (25b) shows that the coordinates 1J! and 
X then interchange roles, but the metric remains 
regular. The space-time region where S < Scrit is an 
electromagnetic generalization of Taub space; the 
region S > Scrit is a generalization of outer NUT 
space; and the null hypersurface S = Scrit is the 
analog of the Misner boundary.25.16 

III. STATIC MAGNETIC UNIVERSES 

For E ¥- 0, Eq. (17) has another solution for which 

S2 = _Eq2, $ = S = 0, E ¥- 0, (31) 

so that (16) becomes 

Jif= -1/q2. (32) 

We thus obtain the metric forms 

ds2 = dT2_E2coS2 (T/q)dX2_q2d02, E= -I, 

(33a) 

ds2 = E2 cos2 (X/q) dT2 - dX2 - q2 d'i:,2, E = + 1, 

(33c) 

where E is a constant of integration. [The coordinates 
have been renamed to obtain (33c), and an over-all 
minus sign, which has no physical significance, has 
been dropped for the sake of convention.] These are 
the Bertotti solutions,26 which, despite the apparent 
singularities in (33), describe static nonsingular 
electromagnetic universes. The 2-dimensional sub
spaces e = const and <P = const are surfaces of 
constant curvature, negative for (33a), positive for 
(33c). 

IV. UNIVERSES CONTAINING DUST AND 
A MAGNETIC FIELD 

Can the system of equations (14)-(16) still be 
solved in closed form if flo '¥' O? We note that, if 

y = 1 (i.e., if the matter is pressureless dust), then 
(15) has the same form (17) as in the pure magnetic 
case. The solutions (20) or (23) again result, and the 
same timelike parameters (22) may be defined. The 
field equation (14) in terms of those parameters 
becomes 

l' + !(S')2 - ES
2 

- q2) f = Kflo §. (34) 
2 SS' 2 S" 

which has the solutions 

f(1J!)= Esin1J! 
C + D cos 1J! 

Kflo D21J! sin 1J! + (C2 + D2) cos 1J! + 2CD + - -.!...--.!.---'----~-~'---

2D C + D cos 1J! ' 

E = -1, (35a) 
E1p 

f( 1p) = C21p2 + 4q2 

Kflo C 41p4 + 24q 2C2
1p2 - 48q4 

+ 6 C21J!2 + 4q2 ,E = 0, 

(35b) 

f(1p) = E sinh 1J! 
D cosh 1J! - C 

Kflo D21J!sinh 1J! - (C2 + D2)cosh 1J! + 2CD +- , 
2D D cosh 1J! - C 

E=+l, (35c) 

where E is a constant of integration. These expressions 
together with (23) and (25) define the solutions first 
obtained by Doroshkevichll in a different form. 
Shikin27 has also found these solutions, in a notation 
very similar to ours, as has Thorne6 in yet another 
form. If flo vanishes so that these universes contain 
only a magnetic field, these solutions reduce to those 
found in Sec. II above; the cases in which the mag
netic fields vanish but flo is finite are discussed in Secs. 
VI and VII below. 

The dynamic equation (17) for S again has constant 
solutions for E ¥- 0, but these are incompatible (for 
finite f) with (14), so that there exist no static uni
verses containing dust and a magnetic field analogous 
to the Bertotti solutions (33). 

V. UNIVERSES CONTAINING AN IDEAL 
FLUID AND A MAGNETIC FIELD 

We now seek solutions of the system (14)-(16) for 
the case y ¥- 1, i.e., universes containing ideal fluids 
with pressure. The equations for f and S are now 
coupled by source terms of the form (fS2)-r so that 
we cannot, as in previous cases, first solve for SeT) 
and then integrate the remaining equations to obtain 
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I(r). But the technique of replacing the cosmic time 
'T by a suitably chosen timelike parameter has been so 
useful in solving the simpler cases that we are moti
vated to seek a modification of that technique. 

A. General Solution 

We first rearrange (I 5) to obtain 

r = -K(Y - 1)/-lo/S2YG, Y ~ 1, 
where 

(36) 

Upon making the replacements (40) in the original 
definition (37) of G, equating that result with the 
above integral (43), and using (42) to eliminate all 
reference to r, we obtain a differential equation for 
yeS): 

so that 

(37) Once this equation has been integrated to give 
y = yeS), we may obtain reS) from (42) which may 
be written as 

f S 1 G 
-=-2----. 
f S Y G 

(38) 

Substitution of (36) and (38) into (14) yields 

.? ~ Q = _1_[2 ~ + (4 _ 3y)(~)2 _ Y(!... + q2)J. 
y S G Y - 1 S S S2 S4 

(39) 

This equation and the relation (36) are completely 
equivalent to the field equations (14) and (I 5). 

Next we replace the independent variable 'T by a 
new parameter a, but we leave unspecified until later 
the form of the relation between rand a. The operators 
d[dr and d2[dr2 are replaced by 

did d2 
1 (d 2 

r" d) 
dr -+;, da' dr2 -+ (r')2 da2 - -:;; da' (40) 

where the prime denotes differentiation with respect 
to a. The field equation (39) then becomes 

- = 2 - - 2 - + (4 - 3y)-G' y [S" r" S' 
G 2(y - 1) S' r' S 

(r')2( q2)] 
- Y SS' € + S2 ' (41) 

which could be integrated if the last term were 
sufficiently simple. But since a has not yet been 
specified, we may now choose a so that r' and S' 
satisfy 

(r')2(€ + q2.) = S' dy(S)jdS , (42) 
SS' S2 yeS) 

where y is some as yet unknown function of S. [Note 
that, if r(a) and Sea) were known, yeS) would be 
determined uniquely except for a multiplicative 
constant.] With this choice of a, we immediately 
obtain from (41) the result 

[ (
S')2 S4-3YJ y/2(y-1) 

G=g ---o , y , 
r y 

(43) 

where go is a constant of integration. 

(
dr)2 S dy(S)jdS 
dS = y(S)(€ + q2jS2) . 

(45) 

Next, we may invert y = yeS) to find S = S(y) and 
thus r = r(yr Finally, we may calculate 1= 1(Y) 
from (36), thus obtaining the solution of the cosmo
logical Eqs. (14), (I5), and (16) in parametric form 
with y as parameter. 

Jacobs (Ref. 28, Appendix D) obtains a closed-form 
solution for Bianchi type I cosmological models 
containing an ideal fluid with y = t and a magnetic 
field, using a different analysis. 

Note that this solution is valid only if y ~ I [see 
(15) and (36)]: the Doroshkevich solutions (23), 
(25), and (35) for y = I cannot be obtained by the 
technique described here. Nor is this solution valid 
if € = 0 and q = 0 [see (42), (44), and (45)]: this case 
is discussed separately below. We now turn to several 
special cases of (44) which can be integrated analyti
cally. 

B. Quasi-Euclidean Case with Magnetic Field 

The simplest case to consider is that of € = O. The 
space-time metric then has the form (1 b), and the 
intrinsic geometry of the spacelike hypersurfaces 
r = const is Euclidean. The differential equation (44) 
for yeS) becomes 

~(S2 dY) = _ g q(2-)')/(y-I)S(3y-4)(3-Y)/2(y-1) 

dS dS 0 

(

dy ,)(3Y_4) /2( y-1) 
X y-(y+2)/2 -

dS 
(46) 

Provided that q does not vanish, a particular solution 
IS 

y = yoSP, P = (3y - 4)(2 - y)/y2, (47) 

with y ~ 1- or 2. We then obtain from (45) the result 

dr /1 
-=-S, 
dS q 

(48) 
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so that we must have p > 0 or 

-! < y < 2. (47') 

Integrating (48) and solving for S, we find that 

SeT) = [2yq(T - To)]tj[(3y - 4)(2 - y)]t. (49) 

Finally, (36) gives 

f(T) = (2Kf..'Oy2)1/Y [(3y - 4)(2 - y)]t (T _ TO)(2-yl!Y. 

4 - Y 2yq 
(50) 

[The solution (49)-(50) is not the most general 
solution for t < y < 2, as we have been unable to 
obtain the general solution of (46).] This exact solu
tion was first given by Jacobs. 14 

Note that the fluid pressure diminishes the effec
tiveness of the Faraday pressure in resisting gravita
tional collapse transverse to the magnetic field [see (6)] 
so that SeT) can vanish for this case in contrast to the 
Doroshkevich solution (23b), (25b), (35b) for 
pressureless matter and a magnetic field. 

VI. QUASI-EUCLIDEAN SPACE-TIMES 
CONTAINING AN IDEAL FLUID 

A. y = 1 

For E = 0, the spacelike hypersurfaces T = const 
are Euclidean spaces. The exact solution for an 
axially symmetric quasi-Euclidean space-time con
taining only dust (y = I) can be obtained at once 
from the Doroshkevich solution (20b), (23b), (35b) 
by setting q = O. This gives 

SeT) = (!)iC!(T - To)i, (51) 

J(T) = (T~)lEC-t(T - TO)-! 

+ (i)!Kf..'oCt(T - To)f, (52) 
or 

S(1p) = iC1p2, T - TO = T"2C1p3, (53b) 

J(1p) = EjC21p + tKf..'oC21p2. (54b) 

This is the axially symmetric special case of the 
general Bianchi type I solution found by Robinson29 

and by Heckmann and Schiicking30 for a universe 
containing only dust. That general solution has also 
been given in a different form by Jacobs.13 If the con
stant of integration E vanishes, the solution is isotropic 
for all times, and is just the standard, flat Friedmann 
universe.21 Kompaneets and Chernov31 first obtained 
the axially symmetric solution (51)-(52) in a different 
notation. 

B. y ;c 1 

As we noted earlier, the analysis leading to the 
differential equations (44) and (45) is not valid for 

E = 0 and q = 0, i.e., for a quasi-Euclidean space
time containing an ideal fluid but no magnetic field. 
In this case, (37) reduces to 

G=2-+ - =--(S8) S (8)2 1 d 2 

S S S28 dT ' 
(55) 

and (41) may be integrated at once, without forcing a 
restriction such as (42) on the choice of the parameter 
(I. We thus obtain 

G(O') = gO(S'!T,y/(y-llSY(4-3y)/2(Y-l/, (56) 

where go is a constant of integration. Upon trans
forming variables from T to 0' in (55) and equating 
that result with (56), we obtain 

= go(S,)(Zy-l)f(y-1l(T,)-y/(y-lIS(3y-2)(2-yl/2(Y-l/. (57) 

Suppose 0' were chosen such that 

(S,)(2Y-l//(Y-l/( T'rY/(Y-1I S(3 y-2)(2-Y)/2(y-l/ = d~~O') , 

(58) 

where F(O') is some function of 0'. Then (57) could be 
integrated to give 

(59) 

Using this relation to eliminate T' from (58), we 
obtain 

S(4-3y//2S' = (go)-Y/2(y-l/F-y/2(y-1IF', (60) 

which may be integrated at once to give 

[F( 0') ](y-2//2(y-l) 

= _(goy/2(y-ll[A j + S3(2- yl/2j3(y - 1)], 1 < y < 2, 

(61a) 

F(O') = A2Sg0, Y = 2, (61b) 

where Al and A2 are arbitrary constants of integration. 
Now (59) gives dT/dS in terms of Sand F(O'); using 

(61), we obtain 

~; = ( _ go)(y-1l/(2-yl 

X St[A1 + S3(2-11/2j3(y - 1)J(1-1l/(2--1l , 

1 < y < 2, (62a) 

[Upon integrating (62), we would obtain SeT) in 
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implicit form.] Finally, we find from (36) 

fer) = [K(Y - 1),uo?/Y( - gO)(y-I)/(2-y) 

x S-t[AI + S3(2-y)/2/3(y _ 1)]1/(2-1'), 

1 < y < 2, (63a) 

fer) = (-K,uolg~A2)!S-(Yo+I)/2, Y = 2. (63b) 

Note that (62) and (63) require both go and A2 to be 
negative; there is no restriction on AI' We now 
examine the cases 1 < y < 2 and y = 2 separately. 

Case 1. 1 < y < 2 

For arbitrary nonzero values of AI, (62a) cannot 
be integrated in closed form except for certain 
rational values of y. However, if we define a new 
timelike parameter '1jJ by the relation 

i IAII cosh '1jJ == S3(2-y)/2/3(y - 1) + tAl, AI:;e 0, 

(64) 
so that 

S(1jJ) = [frey - I)AI(cosh 1jJ - 1)]2/3(2-1'>, AI> 0, 

(65a) 

S(1jJ) = [frey - 1) IAII (cosh 1jJ + 1)]2/3(2-y), Al < 0, 

(65b) 

then the metric (1 b) may be written in the form 

ds2 = V(1jJ) d'1jJ2 - [2(1jJ) dX2 - S2(1jJ) d12, € = 0, 

(66b) 

where L(1jJ) d1jJ = dr. Using (64) in (62a) and (63a), 
we find, respectively, 

L(1jJ) = (- gO)(y-I)/(2-y)[3(y - 1)]I/(2-Y) IlA
1
IY/(2-1') 

X [2/3(2 - y)](sinh 1jJ)Y/(2-y) (67) 
and 

f( 1jJ) = (K,uoi/ y( - go)(y-1)/(2-y)(y - 1)2(3-2y)/3y(2-y) 

x (lA1)2/3(2-y)(cosh 1jJ + 1)1/(2-y) 

x [3(cosh 1jJ - 1)]-1/3(2-1'), Al > 0, (68a) 

f( 1jJ) = (K,uoi/ y( - gO)(y-I)/(2-y)(y - 1)2(3-2Y)/3Y(2-y) 

x IlA112/ 3(2-y) (cosh 1jJ - 1)1/(2-1') 

x [3(cosh 1jJ + 1)r1
/
3
(2-Y), Al < O. (68b) 

We are thus able to obtain a closed-form expression 
for the metric. 

For Al > 0, we see from (65a) and (68a) that the 
universe expands without bound from an initial 
"cigar" singularity in which [--+ 00, S --+ 0, and 
JSZ --+ O. In late stages of the evolution (1jJ -->- 00), the 
expansion becomes isotropic (jlf --+ SIS). 

For Al < 0, we see from (65b) and (68b) that the 
universe expands without bound from an initial 

"pancake" singularity in which f --+ 0, S --+ So = 
[3(y - 1) lA l lp/3(z-y), and [S2 --+ 0. In late stages of 
the evolution, the expansion becomes isotropic. 

For certain rational values of y, Eq. (62a) may be 
integrated in closed form. If we use the parameter 1jJ 
defined by (64), (62a) may be written in the form 
dr = L(1jJ) d1jJ, where L(1jJ) is given by (67). For 
integral values of y/(2 - y), we obtain 

r - ro = (- got/2n2/(n+2)[l(n + 2)],,/(n+2) ItAd"+1 

X f(Sinh 1jJt+1 de, (69) 

(which may be expressed in closed form for n = 
1,2,3, ... ) and 

y = 2(n + l)/(n + 2) = t, t, t, {, \-2, t, .. '. (70) 

Upon eliminating 1jJ from (65), (68), and (69), we 
would obtain S(r) andf(r) in closed form. 

For Al = 0, we may integrate (62a) in closed form 
to obtain 

SeT) = [3(y - 1)/(- gO)]2(Y-I)/3Y(2-y)[%y(T - TO)]2/3Y, 

(71) 
f(T) = [K(Y - 1),uofY( - gopY-2)(1'-1)/3y(2-y ) 

x [3(y - 1)]-(r+2)/3Y(Y-2)[ty( T - TO)]2/3y. (72) 

The universe expands without bound from an initial 
"point" singularity, and the expansion is isotropic 
for all times. This solution is just the spatially fiat 
Robertson-Walker solution21 in a different form. 

The axially symmetric solution (65)-(69), inclusive, 
for the case y = J was first obtained by Doroshkevichll 

with a different parametrization. The asymptotic 
form of that solution had been given earlier by 
Kompaneets and Chernov.31 

Case 2. Y = 2 

Integration of (62b) yields 

S( T) = (goA 2)1!(3-go)[i(3 - go)( T - TO) ]2/(3-go), (73) 

so that 

.f( T) = [K,uO!( - go)]!(goA2)-2/(3-go) 

x W3 - gO)(T - To)r(1+gol/(3-uo). (74) 

We have already noted that go and A2 must both be 
negative. The qualitative features of the expansion 
depend upon go, but in all cases the expansion con
tinues without bound. For -1 < go < 0, the universe 
expands from an initial "cigar" singularity; for 
go = -1, the universe expands purely transversely from 
an initial "barrel" singularity with f = (K,uo/IA2\)t = 
const. For go < -1, the initial singularity is "point"
like, with f --+ ° and S --+ 0, and II! < SIS or II! > 
SIS for all times, accordingly as -3 < go < -lor 
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go < -3, respectively. The case go = -3 is just the 
spatially flat Robertson-Walker solution21 for y = 2 
in a different form, since the expansion is isotropic 
for all times. 

Exact solutions for general Bianchi type I universes 
containing only an ideal fluid with the rational values 
(70) of y or with y = 2 were first found by Jacobs13

•
28 

by a similar analysis. Jacobs also discusses in detail 
the nature of the singularity in each solution. The 
solutions we have given above for the rational values 
(70) of y and for y = 2 are the axially symmetric 
special cases of Jacobs' solutions. The solutions (65)
(69) and (71)-(72), however, hold for all y in the 

range I < y < 2. 

VII. NON-EUCLIDEAN SPACE-TIMES 
CONTAINING AN IDEAL FLUID 

A. y = 1 

The exact solutions for axially symmetric non
Euclidean space-times (e = -I and e = + I) con
taining only dust (y = I) can be obtained at once 
from the Doroshkevich solutions [(20a), (23a), (35a) 
and (20c), (23c), (35c), respectively] by setting q = 0, 
so that D = C. We then obtain for e = -1 the 
results 

S(!p) = tC(l + cos 1p), T - TO = tC(1p + sin 1p), 

(53a) 

f(1p) = tK,uO[1p sin 1p + 2(1 + cos 1p) + E* sin 1p]/ 

(1 + cos 1p), (54a) 

where E* is a constant of integration, while for 
e = +1 we obtain 

S(1p) = tc (cosh 1p - 1), T - TO = tC(sinh 1p - 1p), 

(53c) 

f(1p) = !K,uO[1p sinh 1p - 2(cosh 1p - 1) + E* sinh 1p]/ 

(cosh 1p - 1). (54c) 

Note that (53a) is a cycloid in the (S, T) plane. 
The solution for e = + I was first obtained by 

Kompaneets and Chernov,31 with Sand f given as 
implicit functions of -r. Kantowski and Sachs9 inde
pendently obtained exact solutions for both e = -I 
and e = + I, using a different parametrization, while 
Thorne4 independently obtained the exact solution 
for e = -1, using the same parametrization as 
Kantowski and Sachs. 

B. y ;if. 1 

We return now to the differential equations (44) 
and (45) of Sec. V for the cases e = ± 1 with q = 0, 
i.e., non-Euclidean space-times containing only an 

ideal fluid. Solutions may be obtained in closed form 
for y = t and for y = 2. 

1. Y = t 
This value of y corresponds to a collision-dominated 

gas of photons or uItrarelativistic free particles. Equa
tion (44) then becomes 

:~ := ~ ~[ (:;n = -egoy-~, (75) 

which may be integrated at once to give 

(
dy)2 = 3ego + 0(, 

dS y! 
(76) 

where 0( is a constant of integration. To simplify 
further analysis, we replace y by a new variable 1p 
defined by 

yi = sinh 1p. (77) 

In terms of the new variable 1p, (76) now becomes 

dS 3 sinh 1p cosh 1p 

d1p =;- (0( sinh 1p + 3ego)!' 
(78) 

Depending on the value of 0(, we obtain two 
different results upon integrating (78): 

S(1p) = So + H3/ego)! sinh2 1p, 0( = 0, (79a) 

S(1p) = So + 0(-2(0( sinh 1p - 6ego)(Q sinh 1p + 3 ego)! , 

Il( ¥- O. (79b) 

With the aid of (76), the differential equation (45) 
for d-r/dS may be written in the form 

d-r := L(1p) = (te coth 1pS(1p) dS)!. (80) 
d1p d1p 

If we use !p instead of T as the timelike coordinate, 
then the metric forms (Ia) and (lc) may be expressed 
as 

ds2 = L2(!p)d!p2 _f2(!p)dX2 - S2(!p)dQ2, e = -1, 

(66a) 

ds2 = V(!p) d!p2 - f2(!p) dX2 - S2(1p) d'i,2, e = +1. 
(66c) 

Thus, the metric can be expressed in closed form, 
even if (80) cannot be integrated in closed form. 

Inserting the solutions (79) in (80), we find 

L(!p) = Ue(3/ego)! cosh2 !p[So + H3/ego)! sinh2 !p]}!, 

0( = 0, (8Ia) 

L(1p) = He cosh2 1p[So(1l( sinh 1p + 3ego)-i 

+ O(-i(1X sinh 1p - 6ego)]}!, IX ¥= O. (81b) 
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Finally, we obtain from (36) and (43) from (86), 

f(1p) = (-K,uOlO-)![SO + H3/Ego)1 sinh2 tp]-l, oc = 0, S = So ly2 + ocy + gi 
(82a) 

f(1p) = [( -K,uo/3go}(oc sinh 1p + 3EgO)]! 

x [So + oc-2(cx sinh 1p - 6EgO) 

x (oc sinh 1p + 3EgO)i]-i, oc ~ 0. (82b) 

Recalling that the proper density of the fluid is 
,u = ,uo(fS2)-Y, we find that the solution (79a), (81a), 
(82a) is physically unacceptable, since it leads to nega
tive densities if the metric coefficients L2, p, and S2 
appearing in (66) are positive. With suitable restric
tions on the constants of integration oc, go, and So, 
acceptable solutions of the form (79b), (8Ib), (82b) 
exist for both E = -1 and E = +1. For E = -1, 1p 

is confined to a finite range, so that the universe begins 
and ends in a singularity. 

These solutions for y = t with E = ± 1 were first 
obtained by Kompaneets and Chernov31 withfand S 
given as implicit functions of T. Kantowski1o later 
found these solutions using a parametrization different 
from ours. 

2. Y = 2 

Equation (44) now becomes 

d2y -go dy 
dS2 = y 2S dS' 

which may be transformed to 

(83) 

d
2

y + (gO _ l)dY = 0, (84) 
dz2 y2 dz 

where 

z = log S. (85) 

Upon applying the technique used in Sec. II to solve 
(17), we find the general solution of (83) is 

S = Soexp (f 2 ydy ), 
y + ocy + go 

(86) 

where oc and So are constants of integration. Substi
tuting (86) in (45), we find 

dT == L(y) = ElS(y) , 
dy (y2 + ocy + go)! 

(87) 

X exp [ oc tanh-1 ( 2y + oc )], 
(oc2 

_ 4goyl (oc2 - 4go)! 

E=-1, (86'a) 

and the metric has the form (66a), with y (instead of 
tp) as the timelike coordinate. The special case oc = 0 
reduces to a solution found by Thorne4 in which the 
evolution is purely transverse, with Land f constant, 
and SeT} is a semicircle in the (S, T) plane. 

For E = + 1, acceptable solutions result for go < ° 
and (y2 + ocy + go) > 0, so that (86) yields 

S = SO(y2 + rxy + go}! 

X exp [ -oc coth-1 ( 2y + oc )], 
(oc2 - 4go)i (oc2 

- 4go)i 

E=+1, (86'c) 

with the metric given by (66c), with y as timelike 
coordinate. 

Kantowskj1° first obtained these solutions for 
y = 2 using a different parametrization. 

VIII. SUMMARY 

We have systematically derived a number of exact 
solutions of the Einstein-Maxwell equations for 
spatially homogeneous axially symmetric space-times 
containing an ideal fluid or a uniform magnetic field 
parallel to the axis of symmetry or both. The space
times we have considered have the metric forms 

ds2 = dT2 - f2(T) dX2 - S2(T)(d{)2 + sin2 () dcf>2), 

E = -1, (la) 

ds2 = dT2 - P(T) dX2 - S2(T)(d'Y)2 + d,2), 

E = 0, (Ib) 

ds2 = dT2 - f2(T} dX2 - S2(T)(d()2 + sinh2 () dcf>2), 

E = +1. (Ic) 

In many cases, the field equations did not readily 
permit exact solution forf(T) and S(T); in such cases, 
it frequently proved useful and convenient to replace 
the timelike coordinate T by a timelike parameter 1p 

(or (1, ory) such that the metric forms (1) became 

while (36) and (43) give 

! ( 2 )! 
fey) = (-K,uO) y + ocy + go 

Ego S(y) 

ds2 = L2(1p}d1p2 - P(1p)dX2 - S2(tp)(d()2 + sin2() dcf>2) , 

E=-I, (66'a) 

(88) ds2 = L2(tp} d1p2 - P(tp) dX2 - S2(1p}(d'Y)2 + d,2}, 

For E = -1, acceptable solutions result for go < ° 
and y2 + lXy + go < 0, in which case we obtain, 

E = 0, (66'b) 
ds2 = L2(1p)d1p2 - j2(tp)dX2 

- S2(1p)(d(j2 + sinh2 () dcf>2), E = +1, (66'c) 
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and such that closed-form expressions could be ob
tained for L(tp), even if T - TO = S L(tp) dtp could not 
be reduced to closed form. In some cases, this para
metrization permitted the coupled Einstein equations 
to be separated and solved, if the parameter was 
suitably chosen. (See Sees. V-VII above.) It is hoped 

that this technique will be useful to other workers. 

Metric forms (1) 
ds' J(T) SeT) 

-1 (I'a) (20a) 
0 (I'b) (20b) 

+1 (I'c) (20e) 

-1 (33a) (31) 
+1 a a (31) 

For convenience, a key to the solutions is presented 
in the three tables below: Table I, universes containing 
only magnetic fields; Table II, universes containing 
both magnetic fields and an ideal fluid; Table III, 
universes containing only an ideal fluid. 

TABLE I. Magnetic universes. 

Metric forms (66) 
ds' L(1jJ) J(1jJ) S(1jJ) 

(25a) L=S (28a) (23a) 
(25b) L=S (28b) (23b) 
(25c) L=S (28c) (23c) 

T(1jJ) 

(23a) 
(23b) 
(23c) 

Pertinent references 
(in chronological order) 

22,23 
24, 25, 14,28 

26 
26 

a In this case, the metric cannot be written in the form (l'e), but is given by (33c). 

TABLE II. Universes containing a magnetic field and an ideal fluid. 

Metric forms (1) Metric forms (66) Pertinent references 
y " ds' J(T) SeT) ds' L(1jJ) Jt1jJ) S(1jJ) T(1jJ) (in chronological order) 

-1 (25a) L=S (35a) (23a) (23a) 11,27,6 
0 (2Sb) L=S (3Sb) t23b) (23b) 11,27,6 

+1 (2Sc) L=S (3Sc) (23c) (23c) 11,27,6 

t<y<2 0 (I'b) (50)& (49)3 14 

a This is not the most general solution possible for this case; see Eq. (46) and subsequent discussion. 

TABLE III. Universes containing only an ideal fluid. 

Metric forms (1) Metric forms (66) Pertinent references 
y ds' J(T) SeT) ds' L(1jJ) f(1jJ) S(1jJ) T(1jJ) (in chronological order) 

-1 (2Sa) L=S (S4a) (S3a) (S3a) 11,4,27,9,6 
0 (l'b) (S2) (SI) (2Sb) L=S (S4b) (S3b) (S3b) 29,30,31,11,27,6 

+1 (2Sc) L=S (S4c) (S3c) (S3C) 31,11,27,9,6 

t -1 (66a) (8Ib) (82b) (79b) 31, 10 
.t. +1 (66c) (81 b) (82b) (79b) 31, 10 3 

1 < y < 2& 0 (66b) (67) (68a) (6Sa) (69)d 11, 13, 28e 

1< Y < 2b 0 (i'b) (71) (72) 11, 13,28" 
1< y < 2c 0 (66b) (67) (68b) (6Sb) (69jd 11, 13, 28" 

2 -I (66a) (87) (88) (86'a) 10 
2 0 (I'b) (74) (73) 13,28 
2 +1 (66c) (87) (88) (86' c) 10 

a,b,c These three caseS correspond to different values of a constant of integration. 
d T(tp) may be expressed in closed form only for certain rational values of ~', namely those given by (70). 
e Reference II gives solutions only for y = t; Refs. 13 and 28 give closed-form solutions only for y given by (70). The closed-form solutions given in this paper 

apply for all y in the range 1 < y < 2. 

In all cases, the magnetic field is given by Eq. (9b). 
The solutions for models containing a magnetic field 
are expressed in terms of a constant of integration q 
which is related to Ho by 

For models containing an ideal fluid, the behavior 
of the fluid is given by Eq. (13). 
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I. INTRODUCTION 

The group-theoretical description of unstable par
ticles has drawn the attention of many physicists in 
recent years. Two distinct approaches to this problem 
have evolved each of which treats different kinematical 
aspects of the problem. 

In the first approach! attempts were concen
trated on the description of unstable particles by 
means of nonunitary representations of the Poincare 
group, i.e., emphasizing the problem of the mean 
lifetime. On the other hand, the second approach2 

concentrated on the continuous mass spectrum which 
was described by the concept of a generalized free 
field using multiplicity-free unitary representations of 
the Poincare group. 

It is a common statement in the literature that al
though these two approaches are inequivalent from the 
group-theoretical point of view, since they use different 
types of representations, they are still complementary 
in view of the uncertainty relations (which are intro
duced as external conditions). 

However, in this paper we shall develop a model 
which treats both aspects of the problem (lifetime and 
mass spectrum) simultaneously and resolves both the 
group-theoretical problem stated above and the ex
ternal use of the uncertainty relations. The main new 
features of this treatment are the construction of Lie
algebra-invariant equations for unstable particles 
and the use of generalized eigenfunctions3 and 
complex Fourier transforms.! Admittedly, most of the 
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recent years. Two distinct approaches to this problem 
have evolved each of which treats different kinematical 
aspects of the problem. 

In the first approach! attempts were concen
trated on the description of unstable particles by 
means of nonunitary representations of the Poincare 
group, i.e., emphasizing the problem of the mean 
lifetime. On the other hand, the second approach2 

concentrated on the continuous mass spectrum which 
was described by the concept of a generalized free 
field using multiplicity-free unitary representations of 
the Poincare group. 

It is a common statement in the literature that al
though these two approaches are inequivalent from the 
group-theoretical point of view, since they use different 
types of representations, they are still complementary 
in view of the uncertainty relations (which are intro
duced as external conditions). 

However, in this paper we shall develop a model 
which treats both aspects of the problem (lifetime and 
mass spectrum) simultaneously and resolves both the 
group-theoretical problem stated above and the ex
ternal use of the uncertainty relations. The main new 
features of this treatment are the construction of Lie
algebra-invariant equations for unstable particles 
and the use of generalized eigenfunctions3 and 
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predictions that follow from this model are known, 
guessed, or stated as assumptions in other treatments, 
but it seems to us that their consistent rigorous 
derivation from one single and simple equation 
deserves presentation. 

II. EQUATIONS DESCRIBING UNSTABLE 
PARTICLES 

In this section we derive equations for unstable 
particles by generalizing the 5-dimensional approach 
to the construction of free-stable-particle equations.4 

The main point in this method is the use of 10(4, 1) 
[inhomogeneous 0(4, 1) group] as a symmetry group 
of the desired equations which is broken in the last 
step of the construction to yield 10(3, 1) in variance 
only. 

Explicitly, the method utilizes for the description of 
free stable particles those representations of 10(4, 1) 
which satisfy Papa = 0, while on the covariant fields 
the following conditions are imposed: 

Papatp(p) = 0, D.ab(p)tp(p) = 0, (1) 
where 

D.ab(P) = !€abcdePCWde, 
Wab(p) = !€abCdepcMde, a, b, ... = 0, ... ,4. (2) 

Here, Mde and pc are the generators of 0(4, 1) and 
translations, respectively. The desired free stable equa
tions then result upon restriction of 10(4, 1) to the 
10(3, 1) subgroups which leave P4 invariant. Equation 
(1) now takes the form 

Pllplltp(P) = m 2tp(p), 

D.ab(/P4/ = m)(p) = 0. (3) 
Now, it can be easily seen that, if we put m2 ~ P4 ~ 

m1 , instead of P4 = m, then the derived equations 

Papa (mz ~ P4 ~ ml ) tp(p) = 0, 

D.ab (m2 ~ P4 ~ ml ) tp(p) = ° (4) 

will be Lorentz invariant (as they remain invariant 
under transformations which leave P4 unchanged) 
and describe a particle with a continuous mass. 
Nevertheless, since we require an explicit expression 
of the particle instability, we must refer to nonunitary 
representations of 10(4, 1) and their decomposition 
with respect to JO(3, 1). 

The nonunitary representations of 10(4, 1) which we 
need in our treatment are characterized by complex 
momenta which satisfyl 

7Ta7Ta = 0, 7Ta = Pa + iqa' qa = - (rj2b)Pa, (5) 

where rand b are some constants. 
The little group for a momentum vector in these 

representations will be the same as for the unitary 
representations of 10(4, 1) characterized by Papa = 0; 
namely,S E(3) (Euclidean group in 3-dimensions) and 

the specific representations of this group which we use 
in the following are characterized by finite real spin 
(as for stable particles). Following the same arguments 
as in Ref. 4, one can prove that the nonunitary repre
sentations of 10(3, 1) which appear in the reduction 
of the above-mentioned representations are6 

[M, s] M = (1 ~ irj2b)m, (6) 

each value - 00 < m < 00 appears once, (0, s), ... , 
(0, -s). 

Therefore, to derive the equations we are looking for, 
we must take the x representation of Eq. (1), apply 
the complex Fourier transforml to Pa' qa which satisfy 
(5), and then restrict P4 = Re 7T4 in the appropriate 
limits. Then, we find the equations which an unstable 
particle with a continuous mass spectrum must satisfy 
to be 

7Ta7Ta (m2 ~ P4 ~ ml ) tp(7T) = 0, 

Dab (7T; m2 ~ P4 ~ m1) ~p(7T) = 0. (7) 

For spin-! particles these equations reduce after some 
algebra to 

where 

[7TIl7T1' + 7T47T 48(ml m2)]tp(7T) = 0, 

[yll7T1' + y57T48(m l mz)]tp(7T) = 0, 

8(Xl' x 2) = 1, Xl ~ X ~ X2' 

= 0, otherwise. 

(8a) 

(8b) 

Only (8b) is needed, as every solution of it satisfies 
the first. Here, we make the following remarks: 

(1) In the limit when 7T48(m1m2) is replaced by 
MO(P4 - m), Eqs. (7) reduce to those given in Ref. 1. 

(2) In our equations we use a multiplicity-free 
representation of JO(3, 1) [as is evident from Eq. (6)]. 
Therefore, our description conforms to the assump
tions made by Lun;atZ in this respect. However, let us 
note that in our model this is a result rather than an 
assumption. 

(3) It is important to realize that these equations 
possess a higher symmetry in some limit. Thus, the 
extra parameter which describes the continuous mass 
is not just a dummy variable as in other treatments2 

but appears as one of the generators of a broken 
higher symmetry. We shall see the significance of this 
fact in Sec. IV. 

III. SECOND QUANTIZATION 

State functions of free stable particles belong to the 
space S of fast decreasing functions. On the other 
hand, unstable-particle state functions belong to the 
space D of functions with compact support. This basic 
difference enables us to quantize the scalar free un
stable field by using the functionals e±irr·x for the 
Fourier analysis of tp(x, r). The fact that these func
tions form a complete orthonormal basis was proved 
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by Gel'fanda (as they are generalized eigenfunctions of 
a self-adjoint operator in the appropriate rigged Hil
bert space). 

Therefore, we may write the following generalized 
eigenfunction expansion: 

r 1 1 d
4

1Tfl . +. 1Jl(X, ) = --2 - [A(1T)e-'U + B (1T)e''''''] , 
(21T) c 2w" 

f1- = 1· .. 4, (9) 

where the range of 1T4 is restricted by I" 

m2::;; Re 1T4::;; ml' W .. = (1Tfl1Tfl)!,1T' X = 1ToXo - 1TflXfl 

and A(1T), B(1T), etc., are defined by 

A(1T) = _i_ fd4X eiUa '''(x). 
(21T)2 fl 0.,- (10) 

Now, if we postulate as usual the following commuta
tion relations (CR's): 

[oo1Jl*(x),1Jl(Y)] = o(x - Y), 

[oo1Jl(x), 1Jl*(x)] = o(x - y), (11) 

we can then deduce the CR 

[A(1T), A+(1T')] = 2W"O(1Tfl - 1T~), f1- = 1· . ,4. (12) 

We notice here that IV" contains exactly the right 
phase factor so as to make the rhs of (12) real. This 
deduction appears in Ref. 1 as an assumption. How
ever, following this result, the introduction and the 
calculation of the two point functions Lls(xa - Ya) is 
parallel to that given in Ref. 1 (except for the necessary 
modifications for the continuous spectrum). 

IV. APPLICATIONS 

A. Muitiplets of Unstable Particles 

Starting with the 0(4, 1) invariant Majorana equa-
tion 

(13) 

we can construct the appropriate Majorana equation 
describing unstable particles with continuous mass 
spectra by the same method described in Sec. II. The 
resulting equation is 

rr.u1Tfl + e(ml' m2)r41T4 - kO]1Jl(1T) = O. (14) 

We solve this equation by the same method suggested 
in Ref. 7. We find the mass bands of this equation to 
be (timelike solutions only) 

mi + k~/n2 ::;; m2 ::;; m~ + k~/n2. (15) 

However, we emphasize that, in contrast to the 
formal phenomenological way7 in which the group 
[0(4, 1) is introduced, in general, and which affords 
no explanation for its breaking effect, Eq. (14) suggests, 
naturally, the introduction of [0(4, 1) group as a 

limiting exact symmetry for unstable elementary par
ticles and an explanation of its breaking effect. 

B. Currents Nonconservation (s = !) 

The generalized eigenfunctions of Eq. (8b) are 

1Jl(1T) = u(1T)ei
""', (16) 

where U(1T) is a 4-vector. The corresponding general
ized currents will be defined as 

Ji1T) = 'ip(1T)Y/L1Jl(1T), (17) 

which are not conserved. In fact, 

where 
oflJfl = i(J(mlm2)ihJ5, (18) 

J5 = 'ip(1T)Y51Jl(1T)· 

Thus, rather than just stating that the current Jfl 
is not conserved, Eq. (18) enables us to trace current 
nonconservation to the symmetry breaking of [0(4,1). 
It is clear, however, that this nonconservation is due 
to the fact that we do not consider the formation of 
new particles out of the decaying particles. Thus, if we 
consider, e.g., the reaction c -+ a + b (a and b stable) 
total current conservation will imply that 

0,,): + o.uJ~ - a,J~ = O. (19) 

To sum up, we suggested in this paper a new model 
[and definition by Eq. (7)] of unstable particles which 
is a natural extension of the stable one. This model 
treats lifetime and mass spectrum of unstable particles 
on equal footing. Moreover, it enabled us to rigor
ously deduce some of the arbitrary assumptions made 
in other unstable particle models and suggest an inter
pretation of the 10(4, 1) symmetry (and its breaking 
effect) used in elementary particle physics. 
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This paper aims at providing a direct and unified approach to two binomial-coefficient identities proved 
recently by Rosenbaum [J. Math. Phys. 8, 1973 (1967)], who made use of rather long and involved con
siderations of commutation relations. The analysis presented here verifies the existence of the wider 
ranges of validity of these identities, as was subsequently pointed out by Gould [J. Math. Phys. 10,49 
(1969)]. 

For all real or complex x and integers n ~ 0, we let Making use of the definitions (1) and (4), we readily 
see that 

(~) = 1, S;:;::' = (A) ( 'P ) 

(1) m mp - r 
(

X) x(x - 1) ... (x - n + 1) . = , WIth 
n n! 

denote a binomial coefficient, and put 

A=IC-1t(n+e--1)( e-) 
n=O n IX - n 

(2) 

and 

B = I(_1)n(n + E -1)(1X). (3) 
n=O IX - 1 n 

In a recent paper, Rosenbauml proved that A = 0 for 
integers IX and e- such that e- ~ IX ~ 2 and B = 0 for 
integers IX and e- such that IX ~ 1, e- ~ 2, and E > IX. 

Subsequently, Gould2 made use of certain facts about 
binomial coefficients and finite differences to show that 
both A and B are, of course, zero for all integers oc ~ 1 
and for all real or complex values of E. It may be of 
interest to physicists as well as mathematical analysts 
to observe how systematically these identities could be 
viewed together in terms of hypergeometric functions. 

We start from definition of the factorial function 
(Ref. 3, p. 19) 

(a)" = a(a + 1)' .. (a + n - 1), 

n ~ 1, with (a)o = 1, (4) 
whence it follows at once that 

(-m)n = 0 (5) 

for all integers m and n such that 0 ~ m < n. 
Now we put 

S;:;::' = i(-l)n( v + n )( A ), (6) 
n=O mp + nq - r m - n 

where p, q, and r are nonnegative integers such that 
mp 2: r. Then, comparing (6) with (2) and (3), we get 

and 
8£-1.£.a = A 

0.1.0 - (7) 

(8) 

~ (-m)n(V+ On 
X "" • • 

n=O (A-m+ On(mp-r+ l)nq(v-mp+r+ On-nq 

(9) 

For integers q ~ 2, the finite series on the right-hand 
side of (9) can be expressed as a hypergeometric 
q+~q+1 function with argument q-q(l - q)"-l. In the 
special cases q = 0 and q = 1, which would serve our 
purpose here, if we particularize other parameters of 
(9) in accordance with (7) and (8), the resulting hyper
geometric series can be summed by using the Gauss 
theorem in the form (Ref. 3, p. 23) 

2Fl[-n, b; c; 1] = (c - b)n!(c)n, (10) 

and we finally have 

ocA = IEB = (1 - oc),,/«(J.. - I)! = 0, (11) 

by virtue of (5), for all integers (J.. ~ 1. 
Therefore, for all integers IX ~ 1, it follows that 

A = 0, for all real or complex values of E, and B = 0, 
for all real or complex values of e- :;6 O. In case of the 
identity B = 0, the additional restriction e- :;6 0, which 
was not stated in Gould's paper, can be waived fairly 
easily from the definition (3). Indeed, when IE = 0, (3) 
would reduce to 

B = i (_l)n(n - 1) (OC) = (_1),1-1 + (-1)" = 0, 
n=O IX-I n 

(12) 

leading us to the desired fact that B = ° for any integer 
(J.. 2: 1 if IE = O. 

• Supported in part by the National Research Council of Canada 
under Grant A7353. 

1 D. M. Rosenbaum, J. Math. Phys. 8, 1973 (1967). 
2 H. W. Gould, J. Math. Phys. 10,49 (1969). 
3 I. N. Sneddon, Special Functions of Mathematical PhYSics and 

Chemistry (Oliver and Boyd, London, \966). 
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It is well known that it is possible to deduce the Lorentz transformations solely on the basis of the 
principles of relativity, space-time homogeneity, and isotropy of space, without making any use of the 
principles of reciprocity and of the invariance of the velocity of light. Here we put forward a rigorous 
and simple formulation of the isotropy principle, which appears to be more general than those usually 
presented and which, together with the results of a preceding paper, allows us to carry out such a 
deduction in the physical case of a 4-dimensional space-time in a straightforward and considerably 
simplified way. 

1. INTRODUCTION AND STATEMENT OF 
PURPOSE 

It has been known since the pioneer paper by 
Frank and Rothe l that the principle (a) of invariance 
of the velocity of light is not necessary to derive the 
Lorentz transformations. Instead, it can be seen that 
these transformations can be obtained from a set of 
general principles in which no reference is made to a 
universal constant whatsoever. In this connection, it 
appears that the most primitive and fundamental 
principles are the principles of (i) relativity, (ii) 
space-time homogeneity, and (iii) isotropy of space. 
Indeed, it has been proved by Lalan in a remarkable 
paper which appeared more than thirty years ag02 

that (i)-(iii) alone are sufficient, together with an 
argument which is substantially equivalent to the 
assumption of existence of an arrow of time, to rule 
out aU possible kinematics with the exception of the 
Lorentz and the Galilean ones. Lalan's treatment, 
which exploits the principle of relativity essentiaUy 
through its group content and which is based on the 
study of the structure of the I-dimensional Lie sub
groups of GL(2, R) with the choice of a velocity pa
rameter as a coordinate over the group manifolds, 
can be considerably simplified by adding to the 
principles (i)-(iii) the so - caJled principle (b) of 
reciprocity which states that the velocity of an inertial 
frame of reference S with respect to another inertial 
frame of reference S' is the opposite of the velocity of 
S' with respect to S. 3 Recently, it has been shown4 

that the above reciprocity relation can be deduced in 
a very simple way from (i) and (iii). Thus, it is in fact 
not necessary to assume it as a postulate with the 
purpose of providing a straightforward and elementary 
way of deduction of the coordinate transformations 
between two inertial frames without the requirement 
of invariance of a given velocity. 

Without the use of (a) the common feature of all 
derivations of the Lorentz transformations, which, 
to our knowledge, have appeared in the literature,5 is 
that they ate applied to a 2-dimensional space-time 
or (which is almost equivalent) they start from a 
velocity transformation along an axis between frames 
with parallel axes. This transformation is written in 
the form 

x{ = a(v)x1 + b(v)xo, 

x~ = e(v)x2' 

x~ = e(v)x3' 

x~ = e(v)x1 + d(v)xo, 

(1) 

Xo = t, 
where v = -b(v)Ja(v) denotes the velocity of the 
primed frame with respect to the unprimed one. Here 
the conditions that the corresponding space axes are 
equally oriented and that the times flow in the same 
direction are (compare I) 

OX' 
_1 = a(v) > 0, 
OX1 

ox~ = ox~ = e(v) > 0, 
OX2 oXa 

ox' 
_0 = d(v) > 0, 
axo 

OX1 = d(v) > 0, 
ox{ a(v)[d(v) + ve(v)] 

_OX_o = 1 > o. 
d(v) + ve(v) 

(1') 

Of course, this procedure implies no loss of general
ity because, in view of the homogeneity of space-time 
and of the isotropy of space, it is always possible to 

2226 



                                                                                                                                    

ISOTROPY OF SPACE 2227 

let the space-time orlgms coincide by means of a 
translation and, at the same time, it is possible to go 
over to parallel axes, while orienting the Xl axes of 
both frames along the direction of the relative velocity, 
by means of appropriate space rotations. The justifi
cation for writing the transformations in form (1) 
once the above operations have been suitably per
formed is ascribed to the isotropy of space which is 
supposed to tell us that x~ and x~ do not depend on 
X2 and Xa and that x~ and x~ are proportional, with 
the same coefficient, to the corresponding unprimed 
coordinates X 2 and Xa. In this context, however, 
appeals to the isotropy principle are usually rather 
vague and unsatisfactory and there lacks a formal 
and general statement of the principle which would 
unavoidably lead to transformations (1) for parallel 
axes and relative velocity directed along the Xl axis. 
When the Lorentz transformations are derived with 
the use of (a), this omission is not very important and 
can be forgiven. Indeed, in this case, once the linearity 
has been granted as a consequence of space-time 
homogeneity or, alternatively, of the principle of 
inertia, the whole Poincare group P can be immedi
ately deduced, as is well known, by applying (a) to 
the set of transformations6 

x; = Lllvxv + all' fl, Y = 1,2,3,0, (2) 
to get 

gllvLllpLvu = gpa, 

{gpa} = diag (-1, -1, -1, c2), (3) 

and the velocity transformations along an axis are 
easily obtained as special cases of Eqs. (2) plus (3).7 

On the other hand, if one wants to avoid using (a), 
it does not seem to be easy to arrive at the structure of 
P by the use of (i)-(iii) alone, without passing through 
the particular transformation (1). Therefore, it would 
be advisable that in an axiomatic deduction of P 
from (i)-(iii), the isotropy principle be given a rigorous 
and general formulation which should both conform 
to intuition and allow an unambiguous and straight
forward derivation of formulas (1) as the basis for the 
subsequent analysis. It is the purpose of the present 
paper to put forward and exploit such a formulation 
in a convenient way, thus filling the gap which was 
left open in I, where transformations (1) [with 
e(v) = 1] were taken for granted and the basic 
principles directly applied to the 2-dimensional case. 
A successful attempt in this direction has already 
been made by Lalan8 who requires the set of trans
formations among frames with parallel axes to be 
invariant under space rotations. However, we believe 
this statement to require more than the isotropy 
principle actually implies, and we shall see that the 

same results can be obtained on a basis which is 
less restrictive and sticks closer to the actual content 
of the principle itself. 

2. FORMULATION OF THE ISOTROPY 
PRINCIPLE 

Let Sand S' be two inertial frames using orthogonal 
space axes, and let 

(4) 

be the transformation equations which express the 
coordinates of an event as seen by S' in terms of the 
coordinates of the same event as seen by S. 

We denote bye], e2 , e3 (respectively, e~, e~, e~)the 
space axes of S (respectively of S'). 

The assumption that space-time is homogeneous 
implies the linearity of the Ill' The proof of this 
assertion, which was given in I for the 2-dimensional 
case, holds equally well here. Hence, we write (4) as 

(5) 

modulo a space-time translation, and, by the inverti
bility condition, 

(6) 

We suppose that Sand S' are not at rest with 
respect to each other. 

Denote by v = {V1' v2 , va} the velocity of S' with 
respect to S as given by its components along the 
space axes of S and by w = {w~, w~, w~} the velocity 
of S with respect to S' as given by its components 
along the space axes of S'. We have9 

(7) 

and 

(8) 

Now let S' perform a space rotation which directs 
the axis e{ parallel to w. This gives, from (8), 

L 20 = L30 = 0, (9) 
and we set 

L10/Loo = w~ = w ;t. O. (10) 

Then let S perform a corresponding rotation which 
directs the axis e1 parallel to v. Setting10 

VI = V ¥- 0, (11) 
we have, from (7), 

Lilv + L iO = 0; (12) 
whence, by (9), 

L21 = L31 = 0 (13) 
and 

v = -L10/L11 • (14) 
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Thus, the matrix L = {Lpv}, which characterizes a 
velocity transformation along the first space axis, has 
the following structure: 

(

Ln L12 L 13 LlO) 
o L22 L23 0 

L= , 
o LS2 Las 0 

LOI L02 Loa Loo 

(15) 

on which we impose the conditions [compare (I')] 

Ln > 0 (15') 
and 

Loo/[Ll1(Loo + vLOI)] > 0, 

which express the requirement that the axes el and e~ 
be equally oriented (we can always reduce ourselves 
to this situation by possibly carrying out a rotation of 
71" of one of the two frames about any axis perpen
dicular to its Xl axis). 

Once the form (15) has been attained, all the 
transformations and the only ones, which can be 
performed on the frames Sand S'-without changing 
their respective states of motion-with the condition 
that (9), (13), and (15') should continue to hold and 
by keeping unaltered the 'sign of v, are arbitrary and 
mutually' independent rotations of both Sand S' 
about their respective Xl axes. In other words, if we 
denote by K(v) the set of matrices which correspond 
to all possible velocity transformations along the first 
space axis for a given value v of the velocity of S' 
with respect to S and which satisfy (15'), and by 
L(v) we denote an arbitrary fixed element of K(v) , we 
have that every matrix ME K(v) can be written at 
least in one way in the form 

M = R(rx)L(v)R({J) = M(a,P) , (16) 
where 

(~ co~ # Si~ # ~) 
R(#)= 0 -sin# cos# 0 

o 0 0 1 

(17) 

and there is no restriction on the range of variation of 
the angles rx and (3 as M varies in K(v), 

Lemma: The relation among the elements of K(v), 
N,....., N' iff 3 angles oc, {3, and (3' such that 

N=M(P,a), N'=M(P',a), (18) 

is an equivalent relation. 

Proof: Reflexivity and symmetry are trivial. To 
prove transitivity, suppose N ro..J N' and N',....., N", 

Then, by hypothesis, there exist angles rx, {J, and (J' 
such that 

N = R({J)LR(oc), N' = R({J')LR(rx), 

and angles y, 0', and 0" such that 

N' = R(o')LR(y), N" = R(o")LR(y), 

There follows 

N" = R(o" - o')R(o')LR(y) = R(o" - o')R({J')LR(rJ.) 

= R(o" - 0' + (3')LR(oc), 

which proves N,....., N". 

We denote the general equivalence class by 

Ka = {N 13 (J such that N = M(p,a)}' (19) 

We state the principle of isotropy of space in regard 
to the set K(v) as follows: there exists only one 
equivalence class, namely the quotient set K(v)/""'" has 
a single element, Formally, 

Ka = Ka" V oc and rx'. (20) 

Indeed, as it appears from (16), Ka and Ka' represent 
the two sets of velocity transformations along the 
first space axis for which the unprimed frame S is 
(counterclockwise) rotated about the axis e l by an 
angle - oc and, respectively, by an angle - rx', starting 
from a given initial configuration. Now, by the 
isotropy of space expressed as the equivalence of all 
directions perpendicular to the direction of the 
relative motion, we must always get equal sets of 
transformations no matter how oc and oc' are chosen. 

3. USE OF THE ISOTROPY PRINCIPLE 

Explicitly, condition (20) states that for every oc, 
rx', and {J there exists a (J' such that 

R({J')L(v)R(rx') = R({J)L(v)R(rx), (21) 

It is easily seen that this condition is equivalent to the 
following one: For every angle oc there exists an angle 
(3 such that 

R({J)L(v) = L(v)R(rJ.). (22) 

Equation (22) is a particular case of the standard 
equation AX = XB in the theory of matrices, of 
which the general solution is known,u However, in 
order to keep our treatment as elementary as possible, 
we do not refer to the general theorem of Ref, 11 but, 
instead, work out the solution explicitly. 

Inserting (15) and (17) into (22) and introducing 
the 2 X 2 matrices 

P(oc) = ( co~ ex sin ex) 
-8m ex cos rJ. 
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and 

A(v) = (L22 L 23) , 
L32 L33 

we get the conditions 

and the reality condition implies that 

1m B22 = - 1m B33 = F 
and 

Re B22 = Re B33 = E, 
Lr2 = Lr2 cos at - L r3 sin at, whence 

L r3 = Lr2 sin at + L r3 cos at, r = 1, 0, (23) 
and 

P(~)A(v) = A (v)P(at). (24) 

Introducing the matrix 

W = ( i. 1), 
-I 1 

(25) 

we have 

WP(at)W-1 = t I. ( . 1) ( cos at sin at) (-i Ii) 
- I 1 - sin ot cos ot 1 

= (ei~ 0.) = Q(ot). (26) o e-tlX 

Further, we set 

WAW-l = B = (B22 B 23). 
B32 B33 

Then, writing (24) as 

Q(~)B = BQ(ot), 

we get the equations 

B 22eiP = B22ei~, 

B 23eiP = B 23e -ilX, 

B 32e-iP = B 32e
ilX, 

B 33eiP = B 33e-ilX . 

(27) 

(28) 

(29a) 

(29b) 

(29c) 

(29d) 

Condition (6) implies B =;f:. 0, and suppose first that 
B22 =;f:. O. This implies 

{J = at, mod 27T, 

and, by the arbitrariness of at, 

B 23 = B32 = 0, 

(30) 

(31) 

while, by (6), B22 and Ba3 are nonzero complex 
numbers which are subject only to the condition that 
A be a real matrix. 

On the other hand, if B23 =;f:. 0, Eq. (29b) implies 

(J = ":"'at, mod 27T. 
Hence, 

(32) 

(33) 

while B 23 and B32 are nonzero complex numbers which 
are again subject to the condition that A be real. 

Corresponding to (30), we have 

A = W-IBW = W-l(B22 0) W 
o B33 

= t ( B22 + B33 i(B33 - B 22») (34) 
i(B22 - B 3a) B22 + B33 

A=(E F) 
-F E ' 

(35) 

where, by (6), (E2 + P)! = K =;f:. O. Setting cos {} = 
E/K, sin {} = F/K, we can write A as 

A = (K 0 ) ( cos {} sin {}), K > O. (36) 
OK-sin {} cos {} 

Similarly, corresponding to (32), we obtain 

A = (~ ~G) , (G2 + H2)! = K =;f:. O. (37) 

Setting cos {} = G/K, sin {} = H/K, we can write A as 

A = (K 0) (1 0) ( co~ {} sin {}) , K > o. 
o K 0 -1 - sm {} cos {} 

(38) 

Finally, by the arbitrariness of ot, Eqs. (23) imply that 

L12 = L 13 = L02 = L03 = O. (39) 

The preceding results can be summed up as follows. 

Proposition: Equation (22) together with the con
dition det L(v) =;f:. 0 admits of solutions only if {J = at 

or {J = -ot. 
(1) If (J = at, the general solution is 

(

Q(V) 0 0 b(V)) 
o e(v) 0 0 

L(v) = R({}(v)) 
o 0 e(v) 0 

c(v) 0 0 d(v) 

= Lo(v)R({}(v», (40) 

where the angle {} is an arbitrary function of v and, 
to the extent of the implications of (22) and provided 
(6) is satisfied, the coefficients Q, b, c, d, and e are 
arbitrary as well (e can be chosen to be positive). 

(2) If (J = - at, the general solution is 

L(v) = Lo(v) L R({}(v», (41) 
where 

~ -(~ 
0 0 

~) 0 

0 -1 

0 0 

(42) 
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Thus, if we impose conditions (I') on Lo(v), we see 
that, according to whether the determinant of the 
transformations is positive or negative, by choosing 
{j(v) = 0 we can select the transformation corre
sponding to the matrix Lo(v) or the one corresponding 
to the matrix Lo(v) ~ as a standard velocity trans
formation along an axis. The first transformation 
refers to space frames which are of the same type 
(both left-handed or both right-handed) and to space 
axes which are parallel and equally oriented. On the 
other hand, the second one refers to space frames of 
opposite types (one left-handed and the other one 
right-handed) having parallel and equally oriented 
Xl and Xz axes and oppositely oriented Xa axes. The 
corresponding equations (30) and (32) express the 
obvious fact that an rx rotation of S' about the axis 
e~ appears to S as an rx or as a - rx rotation according 
to whether Sand S' are of the same type or not. 

Thus, we have come to the conclusion that the 
isotropy principle, as expressed by (20), uniquely 
leads to formulas (1) for a velocity transformation 
along an axis between frames with parallel axes. 

Further, provided the two frames use equal length 
and time standards, the coefficients of (1) are uniquely 
determined functions of v which, by the principle of 
relativity, are independent of either frame. 

To show that e(v) has to be taken equal to 1, we 
must make use of the results of I. Let the two frames 
Sand S' be connected by transformation (1) and 
suppose they both perform a rotation of 7r about their 
respective Xa axes. Formally, 

S -+ S = TS and S' -+ S' = TS', (43) 
where 

( -~ T= o 
o 

o 
-1 

o 
o 

o 
o 
1 

o ~) (44) 

The matrix which connects S to S' is 

0 0 

Lo(v) = TLo(v)T = ~ 
( a(v) 

e(v) 0 
-:(V) 

0 e(v) o ' 
-c(v) 0 0 d(v) 

(45) 

which is again of the form (1) and satisfies (I') if (1) 
does. Hence, we can write 

(

a(v) 
_ 0 
Lo(v) = Lo(v) = 0 

c(v) 

o 
e(v) 

o 
o 

o 
o 

e(v) 

o 

b(V») 

~ ,(46) 

d(iJ) 

where, by (45), v = -v. Therefore, by comparison 
[see I, formulas (18)], 

a( -v) = a(v), (47a) 

be-v) = -b(v), (47b) 

c( -v) = -c(v), (47c) 

d( -v) = d(v), (47d) 

e( -v) = e(v). (47e) 
Writing 

w = b(v)Jd(v) = cp(v), (48) 
we have 

Lo(cp(v» = Lil1(v); (49) 
hence 

e(cp(v» = e-1(v). (50) 

By using (47) and the principle of relativity [stating 
cp(cp(v» = v], we can prove that 

cp(v) = -v (51) 

exactly in the same way as in I. 
Then, combining (50), (51), and (47e), we get 

e2(v) = 1, (52) 

whence, since e(v) is positive, 

e(v) = 1. (53) 

At this point, the whole treatment can be freely 
restricted to the 2-dimensional case, and we refer to I 
for the derivation of the Lorentz transformations. 

4. CONCLUSION 

The combined results of I and of the present paper 
provide a straightforward, rigorous, and most 
elementary deduction of the Lorentz transformations 
(hence of the Poincare group) which does not make 
use of the reciprocity principle and of the existence of 
an invariant velocity, being based only on the principle 
of relativity together with the customary assumptions 
in regard to the structure of the space-time manifold 
in special relativity; namely, space-time homogeneity 
and isotropy of space. 
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Using the results of Ma1cev and Dynkin, the irreducible representations of connected components of 
complex semisimple Lie groups are classified. The simple Lie algebras A l , Bn , Cn , G2 , F4 , E" and E8 
have no outer automorphism and, for the Lie algebra D 2k , the automorphism corresponding to the contra
gredient transformation is inner. Hence, all the irreducible representations of all simple Lie algebras ex
cept An (n> 1), D2k+1, and E6 are self-contragredient. For An (n > 1), D2k+l, and E6 , an irreducible 
representation is self-contragredient, provided its highest weight possesses the symmetry to reduce the 
outer automorphism of the algebra into an inner one for the representation. All the self-contragredient 
irreducible representations are classified into orthogonal and symplectic types by reducing the problem 
to the case of the angular-momentum algebra. 

I. INTRODUCTION 

A unitary irreducible representation (VIR) of a 
compact simple Lie group belongs to one of the three 
Wigner1 classes, complex, real, or pseudo-real. Re
cently Mehta2 and Mehta and Srivastavaa classified 
the finite-dimensional VIR's of (compact) simple 
Lie groups. In this article, we present the classification 
of the finite-dimensional irreducible representations 
(IR's) of the connected complex semisimple Lie groups. 

Here we are, in fact, bringing together results of 
MaIcev4 and Dynkin.5 •6 In contrast to the method used 
in Refs. 2 and 3, which requires separate and laborious 
investigation of each simple Lie group, the present 
method is simple and does not require case considera
tions. It is based on the knowledge of the outer auto
morphisms of corresponding Lie algebras and on a 
certain property of the principal 3-dimensional sub
algebra. Indeed, all IR's of a semisimple Lie algebra 
which has no nontrivial outer automorphism are 
trivially self-contragredient (real and pseudo-real in 
Wigner's classification). Also, all the IR's of the Lie 
algebra of type D2k are automatically self-contragred
ient. For the other simple Lie algebras, an IR is self
contragredient provided its highest weight possesses 
the symmetry to reduce the outer automorphism of 
the algebra to an inner one for the representation. A 
self-contragredient IR of a semisimple Lie algebra 
induces a representation of its principal 3-dimensional 
subalgebra which is, in general, reducible but contains 
one irreducible component which always carries the 
property of orthogonality or symplecticity (reality or 
pseudo-reality in Wigner's classification) of the 
inducing representation. 

In Sec. 2, all self-contragredient IR's of a semisimple 
Lie algebra are found and, in Sec. 3, they are classified 
into orthogonal and symplectic types. 

Because of the I: I correspondence between the 
connected part of a semisimple complex Lie group and 
its Lie algebra,7 one can go freely from a group to its 
corresponding algebra whenever this is convenient. 

II. AUTOMORPHISMS AND SELF-CONTRA
GREDIENT REPRESENTATIONS 

Let reg) be a linear representation of a semisimple 
Lie group g and if. == [r(g)]H the contragredient 
representation. Here, t denotes the transpose (in a 
conveniently chosen basis). The representations of the 
corresponding Lie algebra G are then related as 
follows: 

rj;(G) = -[reG)]!. (1) 

A representation reg) is called self-contragredient if 
there exists an inner automorphism such that rj;(g) = 
S-l r (g)S, S E reg). 

An automorphism of a Lie algebra is an auto
morphism of the vector space of the algebra which 
'preserves commutators. Let G be a semisimple Lie 
algebra of rank n, and let 7T = (oc1 , oc2 , ••• , ocn ) be a 
system of its simple roots relative to a fixed Cartan 
subalgebra H. Let e . denote the root vector corre
sponding to oci . Th~ matrix (Ai;)' Aij = 2(oc i , OCj )/ 

(:Xi' oc i ), is the Cartan matrix of G determined by 7T. 

A mapping OCi --+ oc i ' of 7T onto itself preserving Cartan's 
scalar products (i.e., Ai; = Ai'j') is an automorphism 
of G defined by!(oci ) = oc i ' ,f(e,,) = eaJ' LetP denote 
the group of all such automorphism's. Clearly, the 
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isometric mapping I is an automorphism of the 
Dynin diagramS of G. Only the identity mapping 
IX; -- lXi' i = 1, 2, ... , n, acts as the identity in Hand 
is an inner automorphism of G. Thus, one can write 
uniquely each automorphism 

(2) 

where qo is an inner automorphism and I is an auto
mOl phism of the Dynkin diagram. 

Let ({I(G) be an IR of G. We can choose a basis in the 
representation space such that ((I (h), hE H, are 
diagonal matrices. From (1), it follows that 

cjJ(h) = -({I(h), hE H. (3) 

Let us define 0 by Oe±CI, = e:j:ai' Then the commutation 
relations yield Ohi = -hi' i = 1,2, ... , n, and ()IX = 
-IX, IX E 1T. Clearly, () is the automorphism which 
transforms a representation of a semisimple Lie 
algebra into its contragredient partner. By (2), one has 
() = qofo, where fo denotes the corresponding auto
morphism of the Dynkin diagram. Since ({I(qoG) is 
equivalent to ((I(G), one has cp(G) = ({I«()G) ~ ({I(f8G). 
Hence, ({I(G) is self-contragredient if and only if the 
diagram automorphism fo is the identity. 

Clearly, it suffices to consider only simple Lie 
algebras. By looking at the Dynkin diagrams of the 
simple Lie algebras (Fig. 1), one sees that the group P 
is the identity for AI, Bn, en, G2 , F4 , E7 , and Es (and 
none other). Hence, all the IR's of these Lie algebras 
are necessarily self-contragredient. 

We now determinefo for the remaining Lie algebras, 
namely An(n> 1), Dn(~4), and E6 • Let A(Al' 
A2 ,' •• ,An) be the highest weight of an IR ((I(G), 
where 

Ai = 2(A, lXi)!(IXO lXi), lXi E 1T, (4) 

are nonnegative integers relative to the basis of simple 
roots as numbered in Fig. 1. Let /).({I denote the system 

, 2 3 n-I n 
An o 0 0 · 0----0 

I 2 3 n-I n I 2 3 
Bn o 0 0 · ~ EsO a 

Is I 2 :3 n-I n 
Cn- • • · -== I 2 :3 

n-I Ero 0 

17 I 2 3 .n-~ D n 0---0----0 

n I 2 3 
I 2 EsO a a 
GI~ 

of weights of ({I (see Sec. 3). Hence, by (3), /).rp = 
-/).({I. Since the highest weight of an IR determines its 
system of weights, it follows that ({I is self-contra
gredient if the lowest weight Al = -A and conversely. 

Using the general algorithmS for finding /).({I, one 
computes the lowest weight and finds that Al = -A 
for any IR of D 2k , i.e., all IR's of D2k are self-contra
gredient. Similarly, one finds that, for An (n > 1), 
D2k+1 (k > 1), and E6 , there are IR's which are not 
self-contragredient, i.e., !9 . is not the identity. For 
Lie algebras of types A and D one can easily deter
mine explicitly their automorphisms and thus find fo 
directly. 5 

By referring again to Fig. 1, one sees that each of 
the diagrams An (n > 1), D2k+1 (k > 1), and E6 has 
only one nontrivial automorphism which must then 
be necessarily fo. Hence, one has for An (n > 1): 

(5a) 

for D2k+1 (k > 1), 

lo( lXi) = lXi' i S 2k - 1, 

le( 1X2k) = 1X2k+1 ,fo(1X2k+1) = 1X2k' (5b) 

and, for E6 , 

fo(rJ. i ) = 1X6- i , iSS, 1e('X6) = 1X6' (5c) 

The highest weight A of cp is obtained from A of f{J 

by applying the permutation Ie appropriate· to the 
algebra on its system of roots. By (4), one then has 

Ai =feCAi) = 2(A,lXi ,)/(lXi"lXi .), lXi' =!e(lXi)' 

Hence, those and only those IR's of An (n > 1), 
D2k+1 (k > 1), and E6 whose highest weights remain 
invariant under the appropriate permutation fo of 
(5) are self-contragredient. All such representations 
are given in Fig. 2. 

4 5 
0 0 

FIG. I. Numbering of simple roots of 
simple Lie algebras (black dots represent 

4 5 6 shorter roots). 
0 0 0 

4 5 6 7 
a 

~ 
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An~4. 

11. 2'+1 

11.,-,--1 __ --<11.>-=2 ___ 11.03 ••••• ~ 
D2k+1 0- 0 ~ 

1I. 2k +1 

~' 
FIG. 2. Self-contragredient representations of Lie algebras of types 

An (n > I), D2k t-l (k > I), and E. [Ai = 2(11., r:t.,)/(r:t.;, r:t.il]. 

III. ORTHOGONAL AND SYMPLECTIC 
REPRESENTATIONS AND PRINCIPAL 

SUBALGEBRA 

Let ({i be a linear representation of G. Let G be a 
semisimple subalgebra of C and ip the representation 
of G induced by ({i, i.e., ((i(x) = ip(x), x E G. Let us 
choose the basis of their Cartan sub algebras such that 
n c H. Let ~ be a weight vector of ({i with the weight 
M. Then it is also a weight vector of ip, with the weight, 
say, M. This implies that g;(h)~ = (M, h)~, hE H, 
and ip(h)~ = (£1, h)~, hEn. That is (M, h) = (£1, h), 
hEn. Hence, M - £1 is orthogonal to n, i.e., £1 
is obtained from M by an orthogonal projection 
onto n. 

We now construct a particular subalgebra G of C. 
We choose root vectors for each simple root of C in 
such a way that (e~, e_~) = 1. Let 

(J = .2 P~!X, ep = .2 u~e~, e_p = .2 u_~e_~. (6) 
aE1T aElT aEu 

We choose p~ so that, for every !X E 7T, 

«(J, !X) = «(J, (J), (7) 

and let u~u_~ = p~. Then it is easy to verify the com
mutation relations 

[(J, ep] = «(J, (J)ep, [(J, e_p] = -«(J, (J)e_p, 

[ep, e_p] = (ep' e_p)(J. 

Hence (J, ep, and cp form a canonical basis of a 3-
dimensional simple subalgebra G, called the principal 
subalgebra of C. 

Equations (6) and (7) define an orthogonal projec
tion of the n-dimensional root space of C onto the 1-
dimensional space generated by (J. From (7), it is 
evident that any simple root is projected onto (J, i.e., 
!Xi ~ (J, !Xi E 7T. 

Let ({i(C) be an IR of C with the highest weight A. 
Then every weight M of ((i(C) is of the form A -
L ki!Xi , where ki are nonnegative integers. We decom
pose the system of weights into classes, called levels, 

defined by the integer k = I ki' which denotes the 
number of simple roots that are subtracted from A. 
Thus, the kth level consists of weights of the form 
A(k) = A - !Xil - !Xi2 - ... - !Xi

k
' !Xi; E 7T. One can 

then characterize A as the zeroth-level weight. Let r be 
the largest possible value of k. Then the total number 
of levels is r + 1. 

A weight A(k) of the kth level of ((i(G) is projected 
onto a weight, say A(k), of the induced representation 
ip(G). By (7), one has then A(k) = A - k(J. It follows 
that no weight but A is projected onto the zeroth level 
of the system of weights of ip( G). This means that A is 
a highest weight of ip( G). If ip( G) has other highest 
weights, they must necessarily be projected from 
levels with k ¢ 0 of ((i(C). Hence, we conclude that the 
induced representation ip(G) , which is in general 
reducible, contains one and only one irreducible com
ponent, say ipl(G), with the highest weight A and of 
dimensionality r + 1. 

Let us now determine r. It is clear that r = 2(A, (J)/ 
«(J, (J) and, since (A - A, (J) = 0, we get r = 2(A, (J)/ 
«(J; (J). Let us introduce the coefficients r~ by the rela
tion 

(J !X 
--=Ir~--. 
«(J, (J) ~E7r (!X, !X) 

(8) 

Multiplying the above equation by 2A, we obtain 

(9) 

Multiplying (8) by y E 7T and using (7), we get the. 
system of linear equations 

1 = ~ r (y, !X) 
£.. ~ , 
~ElT (!X, !X) 

Y E 7T, (10) 

which determines r~. For the simple algebras, the 
value of the coefficients r~ are given6 in Fig. 3. If the 
algebra is semisimple, the system of its simple roots 
decomposes into several orthogonal subsystems. 
Therefore, the system (10) decomposes into several 
subsystems so that the value of r~ depends only on the 
subsystem to which !X belongs. 

Since ipl(G) is an IR of a simple Lie algebra of 
rank one, it follows l that its odd-(even-)dimensional 
representations are orthogonal (symplectic). A self
contragredient IR of a semisimple Lie group al
ways preserves a nondegenerate bilinear form and is 
orthogonal (symplectic) if the bilinear form is sym
metric (skew-symmetric). By Malcev's theorem9 on 
reducible representations, we conclude that a self
contragredient IR ({i(C) of a semisimple Lie algebra is 
orthogonal (symplectic) if r is even (odd). Thus, Eq. (9) 
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An Bn en DD 
n(n+1) n2 nm-I) n tn-I) 

2 n (n-~)(n+2) 
~ (n-2)(n-+3) ~ (n-Il(n+Jl ym-2~n+J1 
. ....................... . CD.:-.~.).~D.~.~) .............. . m::-}).mt.?L ........... 

o !.!J:::k.~.I.lJ.!J.~.~ .. l 
? 2(2n-1) 

• m.::k.::.!1.!.D.::.k:.l..L 0 (n-k+I)(n+k-2) . ...................................... 

I 
2(2n-2) 

b 
2(2n-3) 

b 1·2n 1'(2n-J) 1'(2n-2) 

Es E8 

IS 92 

30 i82 

42 270 

22 
30 220 

IS IS8 

114 

58 

and Fig. 3 classify all the seif-contragredient IR's of 
all semisimple Lie algebras. 

The values of ra in Fig. 3 contain more information 
than is required. For our purpose, it is sufficient to 
use ra (mod 2). Using (9) and the symmetry of the 
coordinates Ai (Fig. 2), we then get the following 
explicit results. Actually, it involves determining 
rt(n+1) for An (n = odd), r n for B", and rn(An_1 + 
An) for Dn. 

(i) The self-contragredient IR's of the Lie algebras 
A 2k , A4k+3' B4k , B4k+3' D2k+1' D4k , G2 , F4 , E6 , and E8 
are always orthogonal. One may notice that there are 
no semisimple Lie algebras all of whose self-contra
gredient representations are symplectic. 

(ii) A self-contragredient IR of A4k+1 is orthogonal 
(symplectic) if A2k+1 is even (odd). 

F4 

22 

42 

30 

IS 

FIG. 3. Values of 
ra for simple Lie 
algebras. 

(iii) An IR of Bn (n = 4k + I, 4k + 2) is orthog
onal (symplectic) if An is even (odd). 

(iv) An IR of en is orthogonal (symplectic) if 
Al + A3 + As + ... is even (odd). 

(v) An IR of D4k+2 is orthogonal (symplectic) if 
A4k+1 + A4k+2 is even (odd). 

(vi) An IR of E7 is orthogonal (symplectic) if 
A4 + A6 + A7 is even (odd). 
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